PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Materials based on chitosan enriched with zinc nanoparticles for potential applications on the skin

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chitosan as a nontoxic, biodegradable, and biocompatible biopolymer with film-forming properties can also be modified to improve its parameters. Modification of polymer films by the addition of nanoparticles is an increasingly common solution due to the higher efficiency of products at the nanoscale compared to the macroscale. In this work, thin chitosan films enriched with biogenic zinc oxide nanoparticles (ZnONPs) from Fusarium solani IOR 825 were obtained by the solvent evaporation method. The influence of nanoadditive on the physicochemical, mechanical, and antimicrobial properties of the polymeric matrix was evaluated. Two different concentrations of ZnONPs were added to the chitosan solution. Spectrometric measurements, mechanical tests, microscopic imaging, and microbiological tests were performed for nanoparticlesmodified and control samples. Analysis revealed that ZnONPs influence the properties of chitosan films. FTIR spectroscopy showed changes that are the result of interactions between polymer matrix and the additive. Modified samples were characterized by increased values of Young’s modulus and tensile strength. SEM analysis combined with energy-dispersive X-ray spectrometry confirmed the presence of zinc in the modified films. The addition of nanoparticles slightly affected the surface morphology of the tested samples, and an increase in roughness was observed. Microbiological tests showed the biostatic activity of the films containing ZnONPs. The obtained films based on chitosan with the addition of ZnONPs can be considered easy-to-obtain biomaterials with potential use as cosmetic and biomedical products.
Rocznik
Strony
24--31
Opis fizyczny
Bibliogr. 39 poz., tab., wykr., zdj.
Twórcy
  • Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland
  • Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Torun, Poland
Bibliografia
  • [1] Muthu M., Gopal J., Chun S., Devadoss A.J.P., Hasan N., Sivanesan I.: Crustacean waste-derived chitosan: Antioxidant properties and future perspectives. Antioxidants 10 (2021) 228.
  • [2] Younes I., Rinaudo M.: Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs 13 (2015) 1133-1174.
  • [3] Kulka K., Sionkowska A.: Chitosan Based Materials in Cosmetic Applications: A Review. Molecules 28 (2023) 1817.
  • [4] Guzman E., Ortega F., Rubio R.G.: Chitosan: A Promising Multifunctional Cosmetic Ingredient for Skin and Hair Care. Cosmetics 9 (2022) 99.
  • [5] Ferreira P.G., Ferreira V.F., Silva F., Freitas C.S., Pereira P.R., Paschoalin V.M.F.: Chitosans and Nanochitosans: Recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics 14 (2022) 1307.
  • [6] Sheokand B., Vays M., Kumar A., Srivastava C.M., Bahadur I., Pathak S.R.: Natural polymers used in the dressing materials for wound healing: Past, present and future. Journal of Polymer Science 61 (2023) 1389-1414.
  • [7] Dodero A., Scarfi S., Mirata S., Sionkowska A., Vicini S., Alloisio M., Castellano M.: Effect of crosslinking type on the physical-chemical properties and biocompatibility of chitosan-based electrospun membranes. Polymers 13 (2021) 831.
  • [8] Wahba M.I.: Enhancement of the mechanical properties of chitosan. Journal of Biomaterials Science, Polymer Edition 31 (2020) 350-357.
  • [9] Machado A.H.S., Garcia I.M., Motta A., Leitune V.C.B., Collares F.M.: Triclosan-loaded chitosan as antibacterial agent for adhesive resin. Journal of Dentistry 83 (2019) 33-39.
  • [10] Preethi S., Abarna K., Nithyasri M., Kishore P., Deepika K., Ranjithkumar R., Bhuvaneshwari V., Bharathi D.: Synthesis and characterization of chitosan/zinc oxide nanocomposite for antibacterial activity onto cotton fabrics and dye degradation applications. International Journal of Biological Macromolecules 164 (2020) 2779-2787.
  • [11] Rajasekaran P., Santra S.: Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micronutrient - Based Antimicrobial Feed Additive. Frontiers in Veterinary Science 2 (2015) 62.
  • [12] Zhang X., Ismail B.B., Cheng H., Jin T.Z., Qian M., Arabi S.A., Liu D., Guo M.: Emerging chitosan-essential oil films and coatings for food preservation – A review of advances and applications. Carbohydrate Polymers 273 (2021) 118616.
  • [13] Lian R., Cao J., Jiang X., Rogachev A.V.: Physicochemical, antibacterial properties and cytocompatibility of starch/chitosan films incorporated with zinc oxide nanoparticles. Materials Today Communications 27 (2021) 102265.
  • [14] Matatkova O., Michailidu J., Miskovska A., Kolouchova I., Masak J., Cejkova A.: Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnology Advances 58 (2022) 107905.
  • [15] Khan I., Saeed K., Khan I.: Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12 (2019) 908-931.
  • [16] Ahmed F., Prashanth S., Sindhu K., Nayak A., Chaturvedi S.: Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. Journal of Indian Society of Pedodontics and Preventive Dentistry 37 (2019) 46-54.
  • [17] Fatoni A., Yessica H.S., Aldilah, Almi M., Rendowaty A., Romsiah, Sirumapea L., Hidayati N.: The Film of Chitosan-ZnO Nanoparticles-CTAB: Synthesis, Characterization and In Vitro Study. Science and Technology Indonesia 7 (2021) 58-66.
  • [18] Mujeeb Rahman P., Abdul Mujeeb V.M., Muraleedharan K., Thomas S.K.: Chitosan/nano ZnO composite films: Enhanced mechanical, antimicrobial and dielectric properties. Arabian Journal of Chemistry 11 (2018) 120-127.
  • [19] Soubhagya A.S., Moorthi A., Prabaharan M.: Preparation and characterization of chitosan/pectin/ZnO porous films for wound healing. International Journal of Biological Macromolecules 157 (2020) 135-145.
  • [20] Thomas V., Yallapu M.M., Sreedhar B., Bajpai S.K.: Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. Journal of Biomaterials Science, Polymer Edition 20 (2009) 2129-2144.
  • [21] Ali A., Phull A.R., Zia M.: Elemental zinc to zinc nanoparticles: Is ZnoNPs crucial for life? Synthesis, toxicological and environmental concerns. Nanotechnology Reviews 7 (2018) 413-441.
  • [22] Sharma P., Reddy P.K., Kumar B.: Trace Element Zinc, a Nature’s Gift to Fight Unprecedented Global Pandemic COVID-19. Biological Trace Element Research 199 (2021) 3213-3221.
  • [23] Skrajnowska D., Bobrowska-Korczak B.: Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 11 (2019) 2273.
  • [24] Ginzburg A.L., Blackburn R.S., Santillan C., Trulong L., Tanguay R.L., Hutchison J.E.: Zinc oxide-induced changes to sunscreen ingredient efficacy and toxicity under UV irradiation. Photochemical and Photobiological Sciences 20 (2021) 1237-1285.
  • [25] Cuajungco M.P., Ramirez M.S., Tolmasky M.E.: Zinc: Multidimensional effects on living organisms. Biomedicines 9 (2021) 1-25.
  • [26] Slavin Y.N., Asnis J., Hafeli U.O., Bach H.: Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15 (2017) 65.
  • [27] Czyżowska A., Barbasz A.: A review: zinc oxide nanoparticles – friends or enemies? International Journal of Environmental Health Research 32 (2022) 885-901.
  • [28] Singh A., Singh N.Á., Afzal S., Singh T., Hussain I.: Zinc oxide nanoparticles: A review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science 53 (2018) 185-201.
  • [29] Trzcińska-Wencel J., Wypij M., Terzyk A.P., Rai M., Golińska P.: Biofabrication of novel silver and zinc oxide nanoparticles from Fusarium solani IOR 825 and their potential application in agriculture as biocontrol agents of phytopathogens, and seed germination and seedling growth promoters. Frontiers in Chemistry 11 (2023) 1235437.
  • [30] Bandeira M., Giovanela M., Roesch-Ely M., Devine D.M., Silva Crespo J.: Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15 (2020) 100223.
  • [31] Mirzaei H., Darroudi M.: Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International 43 (2017) 907-914.
  • [32] Liu H., Adhikari R., Adhikari B.: Preparation and characterization of glycerol plasticized (high-amylose) starch-chitosan films. Journal of Food Engineering 116 (2013) 588-597.
  • [33] Jakubowska E., Gierszewska M., Szydłowska-Czerniak A., Nowaczyk J., Olewnik-Kruszkowska E.: Development and characterization of active packaging films based on chitosan, plasticizer, and quercetin for repassed oil storage. Food Chemistry 399 (2023) 135617.
  • [34] Yin Y.J., Yao K.D., Cheng G.X., Ma J.B.: Properties of polyelectrolyte complex films of chitosan and gelatin. Polymer International 48 (1999) 429-433.
  • [35] Khung K., Ibupoto Z.H., AlSalhi M.S., Atif M., Ansari A.A., Willander M.: Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer. Materials 6 (2013) 4361-4374.
  • [36] Dobrucka R., Dugaszewska J.: Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences 23 (2016) 517-523.
  • [37] Li Y., Zhou Y., Wang Z., Cai R., Yue T., Cui L.: Preparation and Characterization of Chitosan-Nano-ZnO Composite Films for Preservation of Cherry Tomatoes. Foods 10 (2021) 3135.
  • [38] Zhang X., Zhang Z., Wu W., Yang J., Yang Q.: Preparation and characterization of chitosan/Nano-ZnO composite film with antimicrobial activity. Bioprocess Biosystems Engineering 44 (2021) 1193-1199.
  • [39] Santajit S., Indrawattana N.: Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Research International 2016 (2016) 2475067.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cce9befd-6a19-4a0c-869e-da136c74941f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.