Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this research is to investigate observable process changes during multi-layer friction surfacing of EN AW 6060 aluminum, whether for repair, remanufacturing, or new part manufacturing. In this study, friction surfacing was performed with a 10-mm-diameter rod of EN AW 6060 aluminum at spindle speeds ranging from 1000 to 7000 rpm to create up to three layers of 40-mm-long deposits on a substrate of the same alloy. The process forces and layer temperatures were observed. Post-process measurement of flash geometry, layer geometry and microhardness were conducted with the motivation to understand the impact of multi-layer depositions on performance and identifying acceptable conditions required to achieve acceptable build quality. The thickness, deposition and joining efficiency of layers in the multilayer configuration remained consistent. Friction surfacing of EN AW 6060 aluminum allowed for high deposition rates of 9 kg/hr, when compared to other metal additive technologies.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
44--58
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Institut of Production Engineering and Photonic Technologies, TU Wien, Austria
autor
- Institut of Production Engineering and Photonic Technologies, TU Wien, Austria
autor
- Department of Mechanical Engineering, University of Wisconsin-Madison, United States
autor
- Institut of Production Engineering and Photonic Technologies, TU Wien, Austria
autor
- Department of Mechanical Engineering, University of Wisconsin-Madison, United States
Bibliografia
- [1] GANDRA J., KROHN H., MIRANDA R.M., VILACA P., QUINTINO L., DOS SANTOS J.F., 2014, Friction Surfacing – A Review, Journal of Materials Processing Technology, 214, 5, 1062–1093.
- [2] KLOPSTOCK H., 1941, An Improved Method of Joining or Welding Metals, Patent Specification Ref. 572789.
- [3] BEDFORD G.M., VITANOV V.I., VOUTCHKOV I.I., 2001, On the Thermo-Mechanical Events During Friction Surfacing of High Speed Steels, Surface and Coatings Technology, 141/1, 34–39.
- [4] RAFI H.K., PHANIKUMAR G., RAO K.P., 2011, Material Flow Visualization During Friction Surfacing, Metallurgical and Materials Transactions A, 42/4, 937–939.
- [5] PHILLIPS B.J., AVERY D.Z., LIU T., RODRIGUEZ O.L., MASON C.J.T., JORDON J.B., BREWER L.N., ALLISON P.G., 2019, Microstructure-Deformation Relationship of Additive Friction Stir-Deposition Al–Mg–Si, Materialia 7, 100387, ISSN 2589–1529.
- [6] KHODABAKHSHI F., GERLICH A.P., 2018, Potentials and Strategies of Solid-State Additive Friction-Stir Manufacturing Technology: A Critical Review, Journal of Manufacturing Processes, 36, 77–92, ISSN 1526–6125.
- [7] SAKIHAMA H., TOKISUE H., KATOH K., 2003, Mechanical Properties of Friction Surfaced 5052 Aluminum Alloy, Materials Transactions, 44/12, 2688–2694.
- [8] GANDRA J., PEREIRA D., MIRANDA R.M., VILAÇA P., 2013. Influence of Process Parameters in the Friction Surfacing of AA 6082-T6 Over AA 2024-T3, Procedia CIRP, 7, 341–346.
- [9] KALLIEN Z., RATH L., ROOS A., KLUSEMANN B., 2020, Experimentally Established Correlation of Friction Surfacing Process Temperature and Deposit Geometry, Surface and Coatings Technology, 397, 126040.
- [10] GANDRA J., PEREIRA D., MIRANDA R.M., SILVA R.J.C., VILAÇA P., 2013, Deposition of AA6082-T6 Over AA2024-T3 by Friction Surfacing-Mechanical and Wear Characterization, Surface and Coatings Technology, 223, 32–40.
- [11] SUHUDDIN U., MIRONOV S., KROHN H., BEYER M., DOS SANTOS J.F., 2012, Microstructural Evolution During Friction Surfacing of Dissimilar Aluminum Alloys, Metallurgical and Materials Transactions A, 43/13, 5224–5231.
- [12] YU M., ZHANG Z., ZHAO H., ZHOU L., SONG X., 2019, Microstructure and Corrosion Behavior of the Ultra-Fine Grained Aluminum Coating Fabricated by Friction Surfacing, Materials Letters, 250, 174–177.
- [13] PIRHAYATI P., JAMSHIDI AVAL H., 2020, Phase-Field Microstructure Simulation During Aluminum Alloy Friction Surfacing, Surface and Coatings Technology, 402, 126496.
- [14] BARARPOUR S.M., JAMSHIDI AVAL H., JAMAATI R., 2019, Modeling and Experimental Investigation on Friction Surfacing of Aluminum Alloys, Journal of Alloys and Compounds, 805, 57–68.
- [15] BATCHELOR A.W., JANA S., KOH C.P., TAN C.S., 1996, The Effect of Metal Type and Multi-Layering on Friction Surfacing, Journal of Materials Processing Technology, 57/1–2, 172–181.
- [16] TOKISUE H., KATOH K., ASAHINA T., USIYAMA T., 2006, Mechanical Properties of 5052/2017 Dissimilar Aluminum Alloys Deposit by Friction Surfacing, Materials Transactions, 47/3, 874–882.
- [17] DILIP J.J.S., JANAKI RAM G.D., 2013, Microstructure Evolution in Aluminum Alloy AA 2014 During Multi-Layer Friction Deposition, Materials Characterization, 86, 146–151.
- [18] GANDRA J., VIGARINHO P., PEREIRA D., MIRANDA R.M., VELHINHO A., VILACA P., 2013, Wear Characterization of Functionally Graded Al–Sic Composite Coatings Produced by Friction Surfacing, Materials & Design, 52, 373–383.
- [19] KARTHIK G.M., JANAKI RAM G.D., KOTTADA R.S., 2016, Friction Deposition of Titanium Particle Reinforced Aluminum Matrix Composites, Materials Science and Engineering A, 653, 71–83.
- [20] Datasheet of NB-PTCO-012 (PT1000) TE connectivity, website: https://www.te.com/deu-de/product-NB-PTCO-012.html, download: 10.01.2022.
- [21] GANDRA J., MIRANDA R.M., VILACA P., 2012, Performance Analysis of Friction Surfacing, Journal of Materials Processing Technology, 212, 1676–1686.
- [22] PULI R., JANAKI RAM G.D., 2012, Dynamic Recrystallization in Friction Surfaced Austenitic Stainless Steel Coatings, Materials Characterization, 74, 49–54.
- [23] GUO D., KWOK C.T., CHAN S.L.I., 2019, Spindle Speed in Friction Surfacing of 316L Stainless Steel – How it Affects the Microstructure, Hardness and Pitting Corrosion Resistance, Surface and Coatings Technology, 361, 324–341.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cce7589a-15cc-477a-af2d-0dc5855e97cf