Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (X, +) be an Abelian group. One can show that a mapping f: X R satisfying the inequality f(x + y) + f(x-y)≤2f(x)+2f(y) (1) for all x, y ∈ X also satisfies the inequalities f(2x + y)≤4f(:c) + f (y) + f (x + y) - f (x - y) and f(2x+y) + f(2x -y)≤ 8f(x) + 2f(y) for all x, y ∈ X. A question of finding sufficient conditions under which the inequalities (1), (2) and (3) are equivalent will be considered. In this note, some properties of the solution of (1) will be proved. We also consider another definition of a subquadratic function given in [1].
Rocznik
Tom
Strony
73--79
Opis fizyczny
Bibliogr. 3 poz.
Twórcy
autor
- Institute of Mathematics and Computer Science Jan Długosz University of Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
Bibliografia
- [1] S. Abramovich, G. Jameson, G. Sinnamon. Refining Jensen's inequality. Bull. Math. Soc. Sci. Math. Roumanie, Tome 47(95), No. 1-2, 3 14, 2004.
- [2] M. Kuczma. An Introduction to the, Theory of Functional Equation and Inequalities. Cauchy's Equation and Jensen's Inequality. Scientific Publications of the University of Silesia, 489, Warszawa-Katowice-Kraków 1985.
- [3] Z. Kominek, K. Troczka. Some remarks on subquadratic functious. Demonstratio Mathematica, vol. XXXIX, No. 4, 751-757, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cce33f32-0d14-47dc-b74d-0d4d21cb2ca1