PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of GaAs- and GaSb-based active regions emitting in the mid-infrared wavelength range

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper the results of the computer analysis of the GaAs-based and GaSb-based active regions that can be applied in compact semiconductor laser sources of radiation at mid-infrared wavelengths are presented. Quantum well material contents and strain dependencies on the maximal gain are investigated. It is shown that above 3 μm the maximal gain obtained for GaInNAs/AlGaInAs active region is high only for thick, highly-strained GaInNAs QWs with N concentration higher than 2%. Much higher gain in this wavelength range can be obtained for GaInAsSb/AlGaAsSb active region, which offers relatively high gain even at 4.5 μm when the Sb content in GaInAsSb and compressive strain in this layer are equal to 50% and − 2%, respectively.
Rocznik
Strony
597--603
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
  • Photonics Group, Institute of Physics, Lodz University of Technology, 219 Wolczanska St., 90-924 Lodz, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, 219 Wolczanska St., 90-924 Lodz, Poland
  • Photonics Group, Institute of Physics, Lodz University of Technology, 219 Wolczanska St., 90-924 Lodz, Poland
Bibliografia
  • [1] A. Vicet, D. A. Yarekha, A. Perona, Y. Rouillard, S. Gaillard, and A.N. Baranov, “Trace gas detection with antimonide-based quantum-well diode lasers”, Spectrochim. Acta A 58 (11), 2405–2412 (2002).
  • [2] P. Werle, “A review of recent advances in semiconductor laser based gas monitors”, Spectrochim. Acta A 54 (2), 197–236 (1998).
  • [3] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis”, Opt. Las. Eng. 37 (2–3), 101–114 (2002).
  • [4] L.C. Webster, S. O’Byrne, and A.F.P. Houwing “Determination of temperature distributions in air using a scanning vertical-cavity surface-emitting laser”, Fourth Australian Conf. Laser Diagnostics in Fluid Mechanics and Combustion 1, 141–144 (2005).
  • [5] G. Overton, “VCSELs benefit TDLAS combustion measurements”, Laser Focus World 49 (10), 13 (2013).
  • [6] S. Schilt, K. Zogal, B. Kögel, P. Meissner, M. Maute, R. Protasio, and M.-C. Amann, “Spectral and modulation properties of a largely tunable MEMS-VCSEL in view of gas phase spectroscopy applications”, Appl. Phys. B 100 (2), 321–329 (2010).
  • [7] T. Gruendl, K. Zogal, P. Debernardi, C. Gier, C. Grasse, K. Geiger, R. Meyer, G. Boehm, M.-C. Amann, P. Meissner, and F. Kueppers, “50 nm continuously tunable MEMS VCSEL devices with surface micromachining operating at 1.95 μm emission wavelength”, Semicond. Sci. Technol. 28 (1), 012001 (2012).
  • [8] L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimečková, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database”, J. Quant. Spectrosc. Radiat. Transfer 110 (9–10) 533–572 (2009).
  • [9] S. Arafin, A. Bachmann, K. Vizbaras, and M.C. Amann, “Large-aperture single-mode GaSb-based BTJ-VCSELs at 2.62 μm”, 22nd IEEE Int. Semiconductor Laser Conf. (ISLC) 1, 47–48 (2010).
  • [10] A. Joullié, P. Christol, A.N. Baranov, and A. Vicet, “Mid-infrared 2–5 μm heterojunction laser diodes”, in Solid-State Mid-Infrared Laser Sources, Topics Appl. Phys., ed. I.T. Sorokina, K.L. Vodopyanov vol. 89, pp. 1–61, Springer-Verlag, Berlin, 2003.
  • [11] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, Chichester, 2009.
  • [12] R.P. Sarzała, Ł. Piskorski, P. Szczerbiak, R. Kudrawiec, and W. Nakwaski, “An attempt to design long-wavelength (>2 μm) InP-based GaInNAs diode lasers”, Appl. Phys. A 108 (3), 521–528 (2012).
  • [13] G.L. Bir and G.E. Pikus, Symmetry and Strain-induced Effects in Semiconductors, Wiley, New York, 1974.
  • [14] G.P. Donati, R. Kaspi, and K.J. Malloy, “Interpolating semiconductor alloy parameters: Application to quaternary III–V band gaps”, J. Appl. Phys. 94 (9), 5814–5819 (2003).
  • [15] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys”, J. Appl. Phys. 89 (11), 5815–5875 (2001).
  • [16] I. Vurgaftman and J.R. Meyer, “Band parameters for nitrogen-containing semiconductors”, J. Appl. Phys. 94 (6), 3675–3696 (2003).
  • [17] S.L. Chuang, Physics of Optoelectronic Devices, Wiley, Chichester, 1995.
  • [18] M. Bugajski, “Optical gain in quantum well lasers including many-body effects”, Electron Technol. 30 (2), 89–98 (1997).
  • [19] R.P. Sarzała, M. Wasiak, T. Czyszanowski, and W. Nakwaski, “Performance characteristics of the 1.3-μm oxide-confined edge-emitting quantum-dot (InGa)As/GaAs diode lasers”, Bull. Pol. Ac.: Tech. 52 (3), 257–263 (2004).
  • [20] L.C. Lew Yan Voon and M. Willatzen, The keep Method: Electronic Properties of Semiconductors, Springer-Verlag, Berlin, 2009.
  • [21] P.G. Eliseev, “Line shape function for semiconductor laser modeling”, Electron. Lett. 33 (24), 2046–2048 (1997).
  • [22] R. Kudrawiec, “Alloying of GaNxAs1−x with InNxAs1−x: a simple formula for the bandgap parametrization of Ga1−yInyNxAs1−x alloys”, J. Appl. Phys. 101 (2), 023522 (2007).
  • [23] R.P. Sarzała, P. Szczerbiak, and R. Kudrawiec, “Lasers with active regions of diluted nitrides on InP substrate emitting within a range of middle infrared”, Electronics 10, 82–84 (2011), (in Polish).
  • [24] Ł. Piskorski and R.P. Sarzała, “GaInNAs quantum-well vertical-cavity surface-emitting lasers emitting at 2.33 μm”, Bull. Pol. Ac.: Tech. 61 (3), 737–744 (2013).
  • [25] R.P. Sarzała, Ł. Piskorski, R. Kudrawiec, and W. Nakwaski, “Optimization of GaInNAs quantum-well vertical-cavity surface-emitting laser emitting at 2.33 μm”, Appl. Phys. A 115 (3), 961–969 (2014).
  • [26] Ł. Piskorski, L. Frasunkiewicz, A.K. Sokół, and R.P. Sarzała, “A possibility to achieve emission in the mid-infrared wavelength range from semiconductor laser active regions”, 16th Int. Conf. Transparent Optical Networks (ICTON) We.P.9, 9 (2014).
  • [27] Z.Q. Li and Z.M. Simon Li, “Comprehensive analysis of GaSb-based mid-infrared vertical-cavity surface-emitting lasers”, Proc. SPIE 8639, 863907 (2013).
  • [28] T. Czyszanowski, “Thermal properties and wavelength analysis of telecom oriented photonic-crystal VCSELs”, Opto-Electron. Rev. 18 (1), 56–62 (2010).
  • [29] O. Dier, S. Dachs, M. Grau, L. Chun, C. Lauer, and M.-C. Amann, “Effects of thermal annealing on the band gap of GaInAsSb”, Appl. Phys. A 86 (15), 151120 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cce0aada-f834-4d27-b27c-a60e82b7264e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.