PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on the numerical investigations of mass transfer from drug eluting stent

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drug-eluting stent (DES) as the newly developed treatment for the cardiovascular disease has been the preferred treatment option for most of the patients with significant reduction of restenosis incidents. However, the follow-up complications such as late thrombosis after stent implantation limit the further widespread use of DES which has caused extensive attention from the researchers. Numerical method has been widely employed to predict the DES performance in human body during the past decades, contributing to the stent design optimization and a better understanding of drug release mechanisms in a cost-effective way compared to the experiments. Among the existing numerical investigations, different modelling methods of DES inside artery can be found to study the drug transport process, and adopting the proper models physically and mathematically plays a key role to obtain the results well fitting with the practical case. Therefore, in this review article, the existing numerical researches regarding DES mainly in the last two decades have been focused and summarized including the established modeling methods and the controlling parameters investigations related to drug release from DES. In addition, the common results obtained have been discussed collectively aiming to guide the following researches.
Twórcy
autor
  • Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, Paris, France; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin, China
  • Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, 75013 Paris, France
autor
  • Arts et Metiers Institute of Technology, CNAM, LIFSE, HESAM University, Paris, France
Bibliografia
  • [1] Daemen J, Patrick WS. Drug-eluting stent update: part I. A survey of current and future generation drug-eluting stents: Meaningful advances or more of the same? Circulation 2007;116(3):316–28.
  • [2] Santin M, Colombo P, Bruschi G. Interfacial biology of in-stent restenosis. Expert Rev Med Dev 2005;2(4):429–43.
  • [3] Sousa JE, Serruys PW, Costa MA. New frontiers in cardiology: Drug-eluting stents: Part I. Circulation 2003;107(17):2274–9.
  • [4] Mueller RL, Sanborn TA. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. Am Heart J 1995;129(1):146–72.
  • [5] Huang Y, Ng HCA, Ng XW, Subbu V. Drug-eluting biostable and erodible stents. J Control Release 2014;193:188–201.
  • [6] Wang Y, Lou X, Xu X, Zhu J, Shang Y. Drug-eluting balloons versus drug-eluting stents for the management of in-stent restenosis: A meta-analysis of randomized and observational studies. J Cardiol 2017;70(5):446–53.
  • [7] Acharya G, Park K. Mechanisms of controlled drug release from drug-eluting stents. Adv Drug Deliv Rev 2006;58 (3):387–401.
  • [8] Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly (lactic-co-glycolic acid)- based drug delivery systems—A review. Int J 2011;415(1– 2):34–52.
  • [9] Livingston M, Tan A. Coating Techniques and Release Kinetics of Drug-Eluting Stents. J Med Device. 2019; https:// dx.doi.org/10.1115/1.4031718.
  • [10] Byrne RA, Serruys PW, Baumbach A, Escaned J, Fajadet J, James S, et al. Report of a European society of cardiology-european association of percutaneous cardiovascular interventions task force on the evaluation of coronary stents in Europe: executive summary. Eur Heart J 2015;36 (38):2608–20.
  • [11] Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med 2012;367(25):2375–84.
  • [12] Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for serve coronary artery disease. N Engl J Med 2009;360:961–72.
  • [13] Abizaid A, Costa JR. New drug-eluting stents an overview on biodegradable and polymer-free next generation stent systems. Circ Cardiovasc Interv 2010;3(4):384–93.
  • [14] Mikkonen J, Uurto I, Isotalo T, Kotsar A, Tammela TLJ, Talja M, et al. Drug-eluting bioabsorbable stents-an in vitro study. Acta Biomate 2009;5(8):2894–900.
  • [15] McGinty S, Vo TTN, Meere M, McKee S, McCormick C. Some design considerations for polymer-free drug-eluting stents: A mathematical approach. Acta Biomater 2015;18:213–25.
  • [16] Colleran R, Byrne RA. Polymer-free drug-eluting stents: The importance of the Right Control. Circulation 2020;141 (25):2064–6.
  • [17] Zhu X, Pack DW, Braatz RD. Modelling intravascular delivery from drug-eluting stents with biodurable coating: Investigation of anisotropic vascular drug diffusivity and arterial drug distribution. Comput Methods Biomech Biomed Eng 2014;17(3):187–98.
  • [18] Balakrishnan B, Tzafriri AR, Seifert P, Groothuis A, Rogers C, Edelman ER. Strut position, blood flow, and drug deposition implications for single and overlapping drug-eluting stents. Circulation 2005;111(22):2958–65.
  • [19] Chabi F. Etude numérique et expérimentale du transfèrt de masse, par advection et diffusion en écoulement pulsé, sur des stents actifs. Thèse de doctorant 2016.
  • [20] Mandal AP, Mandal PK. Computational modelling of three-phase stent-based delivery. J Explor Res Pharmacol 2017;2 (2):31–40.
  • [21] Hossainy S, Prabhu S. A mathematical model for predicting drug release from a bio-durable drug eluting stent coating. J Biomed Mater Res A 2008;87A(2):487–93.
  • [22] Vijayaratnam PS, Barber TJ, Reizes JA. The localized hemodynamics of drug-eluting stents are not improved by the presence of magnetic struts. 2016; J Biomech Eng 139(1): 014502.
  • [23] Saha R, Mandal PK. Modelling time-dependent release kinetics in stent-based delivery. J Explor Res Pharmacol 2018;3(2):61–70.
  • [24] McKittrick CM, McKee S, Kennedy S, Oldroyd K, Wheel M, Pontrelli G, et al. Combining mathematical modelling with in vitro experiments to predict in vivo drug-eluting stent performance. J Control Release 2019;303:151–61.
  • [25] Morlacchi S, Chiastra C, Cutrı` E, Zunino P, Burzotta F, Formaggia L, et al. Stent deformation, physical stress, and drug elution obtained with provisional stenting, conventional culotte and Tryton-based culotte to treat bifurcations: a virtual simulation study. EuroIntervention 2014;9(12):1441–53.
  • [26] Chen Yu, Xiong Y, Jiang W, Yan F, Guo M, Wang Q, et al. Numerical simulation on the effects of drug eluting stents at different Reynolds numbers on hemodynamic and drug concentration distribution. Biomed Eng Online 2015;14 (Suppl 1):S16. https://doi.org/10.1186/1475-925X-14-S1-S16.
  • [27] Chen Yu, Xiong Y, Jiang W, Wong MS, Yan F, Wang Q, et al. Numerical simulation on the effects of drug-eluting stents with different bending angles on hemodynamics and drug distribution. Med Biol Eng Comput 2016;54(12):1859–70.
  • [28] Kolachalama VB, Tzafriri AR, Arifin DY, Edelman ER. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J Control Release 2009;133(1):24–30.
  • [29] Mandal AP, Sarifuddin, Mandal PK. An unsteady analysis of arterial drug transport from half-embedded drug-eluting stent. Appl Math Comput 2015;266:968–81.
  • [30] Buccheri D, Piraino D, Andolina G, Cortese B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J Thorac Dis 2016;8(10): E1150–62.
  • [31] Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: Delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48 (1):193–202.
  • [32] Philip F, Stewart S, Southard JA. Very late stent thrombosis with second generation drug eluting stents compared to bare metal stents: Network meta-analysis of randomized primary percutaneous coronary intervention trials. Catheter Cardiovasc Interv 2016;88(1):38–48.
  • [33] Vorpahl M, Finn A, Nakano M, Virmani R. The bioabsorption process: tissue and cellular mechanisms and outcomes. EuroIntervention 2009;5(F):F28–35.
  • [34] Wu JJ, Way JAH, Kritharides L, Brieger D. Polymer-free versus durable polymer drug-eluting stents in patients with coronary artery disease: A meta-analysis. Ann Med Surg (Lond) 2018;38:13–21.
  • [35] Su L-C, Chen Y-H, Chen M-C. Dual drug-eluting stents coated with multilayers of hydrophobic heparin and sirolimus. ACS Appl Mater Interf 2013;5(24):12944–53.
  • [36] Venkatraman S, Boey F. Release profiles in drug-eluting stents: Issues and uncertainties. J Control Release 2007;120 (3):149–60.
  • [37] Htay T, Liu MW. Drug-eluting stent: a review and update. Vasc Health Risk Manag. 2005;1(4):263–76.
  • [38] Huang L-Y, Yang M-C, Tsou H-M, Liu T-Y. Hemocompatibility and anti-fouling behavior of multilayer biopolymers immobilized on gold-thiolized drug-eluting cardiovascular stents. Colloids Surf B 2019;173:470–7.
  • [39] Livingston M, Tan A. Coating techniques and release kinetics of drug-eluting stents. J Med Devices 2016;10(1) 010801.
  • [40] Fung LK, Saltzman WM. Polymeric implants for cancer chemotherapy. Adv Drug Deliv Rev 1997;26(2–3):209–30.
  • [41] Gudiño E, Sequeira A. 3D mathematical model for blood flow and non-Fickian mass transport by a coronary drug-eluting stent. Appl Math Model. 2017;2017(46):161–80.
  • [42] Chakravarty K, Dalal DC. A nonlinear mathematical model of drug delivery from polymeric matrix. Bull Math Biol 2019;81(1):105–30.
  • [43] Zhu X, Braatz RD. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion. J Biomed Mater Res Part A 2015;103 (7):2269–79.
  • [44] McGinty S, McKee S, Wadsworth RM, McCormick C. Modeling arterial wall drug concentrations following the insertion of a drug-eluting stent. SIAM J Appl Math 2013;73 (6):2004–28.
  • [45] Prabhu S, Hossainy S. Modeling of degradation and drug release from a biodegradable stent coating. J Biomed Mater Res Part A 2007;80A(3):732–41.
  • [46] Denny WJ, Walsh MT. Numerical modelling of mass transport in an arterial wall with anisotropic transport properties. J Biomech 2014;47(1):168–77.
  • [47] Zhu X, Braatz RD. Modeling and analysis of drug eluting stents with biodegradable PLGA coating: consequences on intravascular drug delivery. J Biomech Eng 2014;136(11) 111004.
  • [48] Zunino P, D’Angelo C, Petrini L, Vergara C, Capelli C, Migliavacca F. Numerical simulation of drug eluting coronary stents: mechanics, fluid dynamics and drug release. Comput Methods Appl Mech Eng 2009;198(45– 46):3633–44.
  • [49] Gervaso F, Capelli C, Petrini L, Lattanzio S, Di Virgilio L, Migliavacca F. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J Biomech 2008;41(6):1206–12.
  • [50] Siepmann J, Siepmann F. Modelling of diffusion controlled drug delivery. J Control Release 2012;161:351–62.
  • [51] Siepmann J, Siepmann F. Mathematical modelling of drug delivery. Int J Pharm 2008;364:328–43.
  • [52] Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly (lactic-co-glycolic acid)- based drug delivery systems — a review. Int J Pharm 2011;415(1–2):34–52.
  • [53] O’Brien CC, Kolachalama VB, Barber TJ, Simmons A, Edelman ER. Impact of flow pulsatility on arterial drug distribution in stent-based therapy. J Control Release 2013;168(2):115–24.
  • [54] Pontrelli G, de Monte F. A multi-layer porous wall model for coronary drug-eluting stents. Int J Heat Mass Transf 2010;53 (19–20):3629–37.
  • [55] Pontrelli G, de Monte F. Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int J Heat Mass Transf 2007;50(17-18):3658–69.
  • [56] Vijayaratnam PRS, O’Brien CC, Reizes JA, Barber TJ, Edelman ER, Ugaz VM. The impact of blood rheology on drug transport in stented arteries: steady simulations. PLoS One 2015;10(6):e0128178. https://doi.org/10.1371/journal. Pone.0128178.
  • [57] Vijayaratnam PRS, Reizes JA, Barber TJ. Flow-mediated drug transport from drug-eluting stents is negligible: Numerical and in-vivo investigations. Ann Biomed Eng 2018;1:1–13.
  • [58] Grassi M, Grassi G. Mathematical modeling and controlled drug delivery: matrix system. Curr Drug Deliv 2005;2:97–116.
  • [59] Artifin DY, Lee LY, Wang CH. Mathematical modeling and simulation of drug release from microsphere: Implication to drug delivery systems. Adv Drug Deliv Rev 2006;58:1274–325.
  • [60] McGinty S, Pontrelli G. A general model of coupled drug release and tissue absorption for drug delivery devices. J Control Release 2015;217:327–36.
  • [61] Noyes AA, Whitney WR. The rate of solution of solid substances in their own solutions. J Am Chem Soc 1897;19 (12):930–4.
  • [62] Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 1931;23(8):923–31.
  • [63] Ferreira JA, Gonc¸alves L, Naghipoor J, de Oliveira P, Rabczuk T. The effect of plaque eccentricity on blood hemodynamics and drug release in a stented artery. Med Eng Phys 2018;60:47–60.
  • [64] Migliavacca F, Gervaso F, Prosi M, Zunino P, Minisini S, Formaggia L, et al. Expension and drug elution model of a coronary stent. Comput Methods Biomech Biomed Eng 2007;10:63–73.
  • [65] Mcginty S, Pontrelli G. On the influence of solid-liquid mass transfer in the modelling of drug release from stents. J Coupled Syst Multiscale Dyn 2015;3(1):47–56.
  • [66] McGinty S. A decade of modelling drug release from arterial stents. Math Biosci 2014;257:80–90.
  • [67] McGinty S, McKee S, McCormick C, Wheel M. Release mechanism and parameter estimation in drug-eluting stent systems: Analytical solutions of drug release and tissue transport. Math Med Biol 2015;32(2):163–86.
  • [68] Pontrelli G, Mascio AD, de Monte F. Local mass non-equilibrium dynamics in multi-layered porous dedia: application to the drug-eluting stent. Int J Heat Mass Trans 2013;66(1):844–54.
  • [69] McGinty S, King D, Pontrelli G. Mathematical modelling of variable porosity coatings for controlled drug release. Med Eng Phys 2017;45:51–60.
  • [70] Saha P, Das PS. Advances in controlled release technology in pharmaceuticals: A review. World J Pharm Pharm Sci 2017;6 (9):2070–84.
  • [71] Durand E, Sharkawi T, Leclerc G, Raveleau M, van der Leest M, Vert M, et al. Head-to-head comparison of a drug-free early programmed dismantling polymactic acid bioresorbable scaffold and a metallic stent in the porcine coronary artery: six-month angiography and optical coherence tomographic follow-up study. Circ Cardiovasc Interv 2014;7:70–9.
  • [72] Naghipoor J, Rabczuk T. A mechanistic model for drug release from PLGA-based drug eluting stent: A computational study. Comput Biol Med 2017;90:15–22.
  • [73] Gudiño E, Sequeira A. Multiscale boundary conditions for drug dissolution applied to drug-eluting stents. Multiscale Model Simul 2017;15(4):1748–67.
  • [74] Gudiño E, Oishi CM, Sequeira A. Modeling of non-Fickian diffusion and dissolution from a thin polymeric coating: An application to drug-eluting stents. Int J Numer Methods Eng 2018;114(3):292–320.
  • [75] Pontrelli G, de Monte F. Modeling of mass dynamics in arterial drug-eluting stents. J Porous Med 2009;12(1):19–28.
  • [76] Bozsak F, Chomaz J-M, Barakat AI. Modeling the transport of drugs eluted from stents: Physical phenomena driving drug distribution in the arterial wall. Biomech Model Mechanobiol 2014;13(2):327–47.
  • [77] Abraham JP, Gorman JM, Sparrow EM, Stark JR, Kohler RE. A mass transfer model of temporal drug deposition in artery walls. Int J Heat Mass Trans 2013;58(1–2):632–8.
  • [78] McGinty S, McKee S, Wadsworth RM, McCormick C. Modelling drug-eluting stents. Math Med Biol 2011;28 (1):1–29.
  • [79] Tzafriri AR, Levin AD, Edelman ER. Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery. CellProlif 2009;42(3):348–63.
  • [80] Vairo G, Cioffi M, Cottone R, Dubini G, Migliavacca F. Drug release from coronary eluting stents: A multidomain approach. J Biomech 2010;43(8):1580–9.
  • [81] Hwang C-W, Wu D, Edelman ER. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 2001;104(5):600–5.
  • [82] Hwang C-W, Wu D, Edelman ER. Impact of transport and drug properties on the local pharmacology of drug-eluting stents. Int J Cardiovasc Interv 2003;5(1):7–12.
  • [83] Grassi M, Pontrelli G, Teresi L, Grassi G, Comel L, Ferluga A, et al. Novel design of drug delivery in stented arteries: A numerical comparative study. Math Biosci Eng 2009;6 (3):493–508.
  • [84] Pontrelli G, de Monte F. Modelling of mass dynamics in arterial drug-eluting stents. J Porous Media 2009;12:19–28.
  • [85] Naghipoor J, Ferreia JA, de Oliveira P, Rabczuk T. Tuning polymeric and drug properties in a drug eluting stents: A numerical study. Appl Math Model 2016;40:8067–86.
  • [86] Ferreira JA, Gonc¸alves L, Naghipoor J, de Oliveira P, Rabczuk T. The influence of atherosclerotic plaque on the pharmacokinetics of a drug eluted from bioabsorbable stents. Math Biosci 2017;283:71–83.
  • [87] Burini D, De Lillo S, Fioriti G. Nonlinear diffusion in arterial tissues: A free boundary problem. Acta Mech 2018;229 (10):4215–28.
  • [88] Borghi A, Foa E, Balossino R, Migliavacca F, Dubini G. Modelling drug elution from stents: effects of reversible binding in the vascular wall and degradable polymeric matrix. Comput Methods Biomech Biomed Eng 2008;11 (4):367–77.
  • [89] Weiler JM, Sparrow EM, Ramazani R. Mass transfer by advection and diffusion from a drug-eluting stent. INT J Heat Mass Tran 2012;55:1–7.
  • [90] Mandal AP, Sarifuddin MPK. An unsteady analysis of arterial drug transport from half-mbedded drug-eluting stent. Appl Math Comput 2015;266:968–81.
  • [91] Sarifuddin, Mandal PK. Effect of diffusivity on the transport of drug eluted from drug-eluting stent. Int J Appl Comput Math 2016;2(2):291–301.
  • [92] Mongrain R, Faik I, Leask RL, Rodés-Cabau J, Larose E, Bertrand OF. Effects of diffusion coefficients and struts apposition using numerical simulations for drug eluting coronary stent. J Biomech Eng 2007;129(5):733–42.
  • [93] LaDisa JF, Olson LE, Guler I, Hettrick DA, Audi SH, Kersten JR, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. Appl Physiol 2004;97(1):424–30.
  • [94] Seo T, Schachter LG, Barakat AI. Computational study of fluid mechanical disturbance induced by endovascular stents. Ann Biomed Eng 2005;33(4):444–56.
  • [95] Hara H, Nakamura M, Palmaz JC, Schwartz RS. Role of stent design and coating on restenosis and thrombosis. Adv Drug Deliv Rev 2006;58(3):377–86.
  • [96] Bozsak F, Gonzalez-Rodriguez D, Sternberger Z, Belitz P, Bewley T, Chomaz J-M, et al. Optimization of drug delivery by drug-eluting stents. PLoS One 2015;10(6):e0130182. https://doi.org/10.1371/journal.pone.0130182.
  • [97] Mandal AP, Mandal PK. Distribution and retention of drug through an idealized atherosclerotic plaque eluted from a half-embedded stent. Int J Dynam Control 2018;6:1183–93.
  • [98] Chen Y, Yan F, Jiang WT, Wang QY, Fan YB. Numerical study on effects of drug-coating position of drug-eluting stents on drug concentration. J Med Biol Eng 2014;34(5):487–94.
  • [99] Mejia J, Ruzzeh B, Mongrain R, Leask R, Bertrand OF. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments. Biomed Eng Online 2009;8(1):8. https://doi.org/10.1186/1475-925X-8-8.
  • [100] Zarandi M, Mongrain R, Bertrand OF. Modeling drug eluting stents for coronary artery bifurcation considering NonNewtonian effects. 3rd Joint US-European Fluids Engineering Summer Meeting 2010;1:1895–9.
  • [101] Seethappa H, Ramarao I, Murthy MK, Padmarajaiah SS. An analytical study of mass transfer by stent based drug delivery system. AIP Conf Proc 2019.
  • [102] Abbasnezhad N, Shirinbayan M, Tcharkhtchi A, Bakir F. In vitro study of drug release from various loaded polyurethane samples and subjected to different nonpulsed flow rates. J Drug Deliv Sci Tec 2020;55:101500. https://doi.org/10.1016/j.jddst.2020.101500.
  • [103] Abbasnezhad N, Zirak N, Shirinbayan M, Kouidri S, Salahinejad E, Tcharkhtchi A, et al. Controlled release from polyurethane films: Drug release mechanisms. J Appl Polym Sci 2021;138(12):50083. https://doi.org/10.1002/app. v138.1210.1002/app.50083.
  • [104] Balakrishnan B, Dooley JF, Kopia G, Edelman ER. Intravascular drug release kinetics dictate arterial drug deposition, retention, and distribution. J Control Release 2007;123(2):100–8.
  • [105] Balakrishnan B, Dooley J, Kopia G, Edelman ER. Thrombus causes fluctuations in arterial drug delivery from intravascular stents. J Control Release 2008;131(3):173–80.
  • [106] Sakariassen KS, Orning L, Turitto VT. The impact of blood shear rate on arterial thrombus formation. Future Sci OA 2015;1(4):1–9.
  • [107] Ibrahimi P, Jashari F, Nicoll R, Bajraktari G, Wester P, Henein MY. Coronary and carotid atherosclerosis: how useful is the imaging? Atherosclerosis 2013;231(2):323–33.
  • [108] Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S. Morphology of vulnerable coronary plaque: insight from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 2000;35(1):106–11.
  • [109] Waxman S, Mittleman MA, Zarich SW, Fitzpatrick PJ, Lewis SM, Leeman DE. Plaque disrupture and thrombus in Ambrose’s angiographic coronary lesion types. Am J Cardiol 2003;92(1):16–20.
  • [110] Saha R, Mandal PK. Effect of flow pulsatility and timedependent release kinetics on stent-based delivery through atherosclerotic plaque. Int J Dyn Control 2016;6:1–13.
  • [111] Seo T, Lafont A, Choi S-Y, Barakat AI. Drug-eluting stent design is a determinant of drug concentration at the endothelial cell surface. Ann Biomed Eng 2016;44(2):302–14.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccda9a8a-a047-45fb-9a79-9a5688ee1b9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.