Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
On average, a derecho occurs once a year in Poland while bow echoes happen several times per year. On 11 August 2017, severe meteorological phenomena were observed in Poland, including extremely strong wind gusts. We focused especially on the convective windstorm of a derecho type which occurred on that date in northern and north-western Poland. A rapidly moving mesoscale convective system (MCS) resulted in a bow echo, a mesoscale convective vortex (MCV), and finally fulfilled the criteria for a derecho. To establish whether our operational models in the Institute of Meteorology and Water Management, National Research Institute (IMGW-PIB) could reproduce a derecho of such intensity as that of 11 August 2017, the results from two mesoscale numerical weather prediction models were analyzed. The Application of Research to Operation at Mesoscale (AROME) and the ALADIN & AROME (ALARO) models were applied in the non-hydrostatic regime. We also examine how models differ with respect to mesoscale convective system drivers (such as vertical wind shear and convective available potential energy) and representation of deep convection (e.g., vertical velocities, cold pool generation). Forecasts are compared with observations of wind gusts and radar data. Severe weather phenomena, such as rear inflow jet and cold pool, were predicted by both models, visible on the maps of the wind velocity at 850 and 925 hPa pressure levels and on the map of air temperature at 2 m above the ground level, respectively. Relative vorticity maps of the middle and lower troposphere were analyzed for understanding the evolution of MCV.
Rocznik
Tom
Strony
88--105
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
autor
- Institute of Meteorology and Water Management - National Research Institute
- Institute of Meteorology and Water Management - National Research Institute
autor
- Institute of Meteorology and Water Management - National Research Institute
autor
- Institute of Meteorology and Water Management - National Research Institute
autor
- Institute of Meteorology and Water Management - National Research Institute
Bibliografia
- Baldauf M., Seiferd A., Foerstner J., Majewski D., Raschendorfer M., Reinhardt T., 2011, Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities, Monthly Weather Review, 139 (12), 3887-3905, DOI: 10.1175/MWR-D-10-05013.1.
- Bouttier F., Marchal H., 2020, Probabilistic thunderstorm forecasting by blending multiple ensembles, Tellus A: Dynamic Meteorology and Oceanography 72 (1), DOI: 10.1080/16000870.2019.1696142.
- Brousseau P., Seity Y., Ricard D., Léger J., 2016, Improvement of the forecast of convective activity from the AROME-France system, Quarterly Journal of the Royal Meteorological Society, 142 (699), 2231-2243, DOI: 10.1002/qj.2822.
- Bryan G.H., Wyngaard J.C., Fritsch J.M., 2003, Resolution requirements for the simulation of deep moist convection, Monthly Weather Review, 131 (10), 2394-2416, DOI: 10.1175/1520-0493(2003)1312.0.CO;2.
- Celiński-Mysław D., Matuszko D., 2014, An analysis of selected cases of derecho in Poland, Atmospheric Research, 149, 263-281, DOI: 10.1016/j.atmosres.2014.06.016.
- Celiński-Mysław D., Palarz A., Łoboda Ł., 2019, Kinematic and thermodynamic conditions related to convective systems with a bow echo in Poland, Theoretical and Applied Climatology, 137, 2109-2123, DOI: 10.1007/s00704-018-2728-6.
- Charba J., 1974, Application of gravity current model to analysis of squall-line gust front, Monthly Weather Review, 102 (2), 140-156, DOI: 10.1175/1520-0493(1974)1022.0.CO;2.
- Chmielewski T., Szer J., Bobra P., 2020, Derecho wind storm in Poland on 11-12 August 2017: results of the post-disaster investigation, Environmental Hazards, 19 (5), 508-528, DOI: 10.1080/17477891.2020.1730154.
- Coniglio M.C., Stensrud D.J., 2001, Simulation of a progressive derecho using composite initial conditions, Monthly Weather Review, 129 (7), 1593-1616, DOI: 10.1175/1520-0493(2001)1292.0.CO;2.
- Davis C.A., Trier S.B., 2007, Mesoscale convective vortices observed during BAMEX. Part I: Kinematic and thermodynamic structure, Monthly Weather Review, 135 (6), 2029-2049, DOI: 10.1175/MWR3398.1.
- De Meutter P., Gerard L., Smet G., Hamid K., Hamdi R., Degrauwe D., Termonia P., 2015, Predicting small-scale, short-lived downbursts: case study with the NWP limited-area ALARO Model for the Pukkelpop thunderstorm, Monthly Weather Review, 143 (3), 742-756, DOI: 10.1175/MWR-D-14-00290.1.
- Dixon K., Mass C.F., Hakim G.J., Holzworth R.H., 2016, The impact of lightning data assimilation on deterministic and ensemble forecasts of convective events, Journal of Atmospheric and Oceanic Technology, 33 (9), 1801-1823, DOI: 10.1175/JTECHD-15-0188.1.
- Droegemeier K.K., Wilhelmson R.B., 1985, Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part II: Variations in vertical wind shear, Journal of the Atmospheric Sciences 42 (22), 2404-2414, DOI: 10.1175/1520-0469(1985)0422.0.CO;2.
- Evans J.S., Doswell C.A., 2001, Examination of derecho environments using proximity soundings, Weather and Forecasting, 16 (3), 329-342, DOI: 10.1175/1520-0434(2001)0162.0.CO;2.
- Figurski M., Nykiel G., Jaczewski A., Baldysz Z., Wdowikowski M., 2021, The impact of initial and boundary conditions on severe weather event simulations using a high-resolution WRF model. Case study of the derecho event in Poland on 11 August 2017, Meteorolology Hydrology and Water Management, DOI: 10.26491/mhwm/143877.
- Fujita T., 1960, Structure of connective storms, [in:] Physics of Precipitation: Proceedings of the Cloud Physics Conference, Woods Hole, Massachusetts, June 3-5, 1959, American Geophysical Union (AGU), 61-66, DOI: 10.1029/GM005p0061.
- Gatzen C.P., Fink A.H., Schultz D.M., Pinto J.G., 2020, An 18-year climatology of derechos in Germany, Natural Hazards and Earth System Sciences, 20 (5), 1335-1351, DOI: 10.5194/nhess-20-1335-2020.
- Gerard L., Piriou J.-M., Brožková R., Geleyn J.-F., Banciu D., 2009, Cloud and precipitation parameterization in a meso-gammascale operational weather prediction model, Monthly Weather Review, 137 (11), 3960-3977, DOI: 10.1175/2009MWR2750.1.
- Glickman T.S., 2000, Glossary of Meteorology, American Meteorological Society, available online at https://glossary.ametsoc.org/wiki/Welcome (data access 31.01.2023).
- Goff R.C., 1976, Vertical structure of thunderstorm outflows, Monthly Weather Review, 104 (11), 1429-1440, DOI: 10.1175/1520-0493(1976)1042.0.CO;2.
- Hamid K., 2012, Investigation of the passage of a derecho in Belgium, Atmospheric Research, 107, 86-105, DOI: 10.1016/j.atmosres.2011.12.013.
- Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N., 2020, The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146 (730), 1999-2049, DOI: 10.1002/qj.3803.
- Houze R.A., 2004, Mesoscale convective systems, Reviews of Geophysics, 42 (4), DOI: 10.1029/2004RG000150.
- Jirak I.L., Cotton W.R., 2007, Observational analysis of the predictability of mesoscale convective systems, Weather and Forecasting, 22 (4), 813-838, DOI: 10.1175/WAF1012.1.
- Łapeta B., Kuligowska E., Murzyn P., Struzik P., 2021, Monitoring the 11 August 2017 storm in central Poland with satellite data and products, Meteorology, Hydrology and Water Management, DOI: 10.26491/mhwm/144590.
- Lean H.W., Clark P.A., Dixon M., Roberts N.M., Fitch A., Forbes R., Halliwell C., 2008, Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom, Monthly Weather Review, 136 (9), 3408-3424, DOI: 10.1175/2008MWR2332.1.
- Lelątko I., Ziemiański M., 2004, Skrócony przewodnik po wybranych wskaźnikach konwekcji, internal publication of forecasters office IMWM-NRI, Gdynia.
- Lopez P., 2002, Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes, Quarterly Journal of the Royal Meteorological Society, 128 (579), 229-257, DOI: 10.1256/00359000260498879.
- Łuszczewski H., Tuszyńska I., 2022, Derecho analysis of August 11, 2017, Meteorology, Hydrology and Water Management, DOI: 10.26491/mhwm/152504.
- Marquet P., Santurette P., 2009, Convective parameters computed ALADIN and AROME models for the Hautmont (F4) tornado, 5th European Conference on Severe Storms, Landshut, Germany, available online at https://www.essl.org/ECSS/2009/preprints/O05-07-marquet.pdf (data access 31.01.2023).
- Masson V., Le Moigne P., Martin E., Faroux S., Alias A., Alkama R., Belamari S., Barbu A., Boone A., Bouyssel F., Brousseau P., Brun E., Calvet J.-C., Carrer D., Decharme B., Delire C., Donier S., Essaouini K., Gibelin A.-L., Giordani H., Habets F., Jidane M., Kerdraon G., Kourzeneva E., Lafaysse M., Lafont S., Lebeaupin Brossier C., Lemonsu A., Mahfouf J.-F., Marguinaud P., Mokhtari M., Morin S., Pigeon G., Salgado R., Seity Y., Taillefer F., Tanguy G., Tulet P., Vincendon B., Vionnet V., Voldoire A., 2013, The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geoscientific Model Development, 6 (4), 929-960, DOI: 10.5194/gmd-6-929-2013.
- Nykiel G., Figurski M., Baldysz Z., 2019, Analysis of GNSS sensed precipitable water vapour and tropospheric gradients during the derecho event in Poland of 11th August 2017, Journal of Atmospheric and Solar-Terrestrial Physics, 193, DOI: 10.1016/j.jastp.2019.105082.
- Pacey G.P., Schultz D.M., Garcia-Carreras L., 2021, Severe convective windstorms in Europe: climatology, preconvective environments, and convective mode, Weather and Forecasting 36 (1), 237-252, DOI: 10.1175/WAF-D-20-0075.1.
- Pergaud J., Masson V., Malardel S., Couvreux F., 2009, A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction, Boundary-Layer Meteorology, 132, 83-106, DOI: 10.1007/s10546-009-9388-0.
- Poręba S., Taszarek M., Ustrnul Z., 2022, Diurnal and seasonal variability of ERA5 convective parameters in relation to lightning flash rates in Poland, Weather and Forecasting, 37 (8), 1447-1470, DOI: 10.1175/WAF-D-21-0099.1.
- Poręba S., Ustrnul Z., 2020, Forecasting experiences associated with supercells over South-Western Poland on July 7, 2017, Atmospheric Research, 232, DOI: 10.1016/j.atmosres.2019.104681.
- Powers J.G., Klemp J.B., Skamarock W.C., Davis C.A., Dudhia J., Gill D.O., Coen J.L., Gochis D.J., Ahmadov R., Peckham S.E., Grell G.A., Michalakes J., Trahan S., Benjamin S.G., Alexander C.R., Dimego G.J., Wang W., Schwartz C.S., Romine G.S., Liu Z., Snyder C., Chen F., Barlage M.J., Yu W., Duda M.G., 2017, The Weather Research and Forecasting model: overview, system efforts, and future directions, Bulletin of the American Meteorological Society, 98 (8), 1717-1737, DOI: 10.1175/BAMS-D-15-00308.1.
- Schumacher R.S., Rasmussen K.L., 2020, The formation, character and changing nature of mesoscale convective systems, Nature Reviews Earth and Environment, 1, 300-314, DOI: 10.1038/s43017-020-0057-7.
- Seity Y., Brousseau P., Malardel S., Hello G., Bénard P., Bouttier F., Lac C., Masson V., 2011, The AROME-France ConvectiveScale Operational Model, Monthly Weather Review, 139 (3), 976-991, DOI: 10.1175/2010MWR3425.1.
- Seity Y., Lac C., Bouyssel F., Riette S., Bouteloup Y., 2013, Cloud and microphysical schemes in ARPEGE and AROME models, conference paper, Workshop on Parametrization of Clouds and Precipitation, available online at https://www.ecmwf.int/en/elibrary/76343-cloud-and-microphysical-schemes-arpege-and-arome-models (data access 31.01.2023).
- Squitieri B.J., Gallus W.A., 2020, On the forecast sensitivity of MCS cold pools and related features to horizontal grid spacing in convection-allowing WRF simulations, Weather Forecasting, 35 (2), 325-346, DOI: 10.1175/WAF-D-19-0016.1.
- Stensrud D.J., Fritsch J.M., 1994, Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition, Monthly Weather Review, 122 (9), 2068-2083, DOI: 10.1175/1520- 0493(1994)1222.0.CO;2.
- Surowiecki A., Taszarek M., 2020, A 10-year radar-based climatology of mesoscale convective system archetypes and derechos in Poland, Monthly Weather Review, 148 (8), 3471-3488, DOI: 10.1175/MWR-D-19-0412.1.
- Tao W.-K., Wu D., Lang S., Chern J.-D., Peters-Lidard C., Fridlind A., Matsui T., 2016, High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations, Journal of Geophysical Research: Atmospheres, 121 (3), 1278-1305, DOI: 10.1002/2015JD023986.
- Taszarek M., Allen J.T., Púčik T., Hoogewind K.A., Brooks H.E., 2020, Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes, Journal of Climate, 33 (23), 10263-10286, DOI: 10.1175/JCLI-D-20-0346.1.
- Taszarek M., Pilguj N., Orlikowski J., Surowiecki A., Walczakiewicz S., Pilorz W., Piasecki K., Pajurek Ł., Półrolniczak M., 2019, Derecho evolving from a mesocyclone - a study of 11 August 2017 severe weather outbreak in Poland: event analysis and high-resolution simulation, Monthly Weather Review, 147 (6), 2283-2306, DOI: 10.1175/MWR-D-18-0330.1.
- Termonia P., Fischer C., Bazile E., Bouyssel F., Brožková R., Bénard P., Bochenek B., Degrauwe D., Derková M., El Khatib R., Hamdi R., Mašek J., Pottier P., Pristov N., Seity Y., Smolíková P., Španiel O., Tudor M., Wang Y., Wittmann C., Joly A., 2018, The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geoscientific Model Development, 11 (1), 257-281, DOI: 10.5194/gmd-11-257-2018.
- Walter H., 2016, Raymond and Jiang (1990): Long-lived mesoscale convective systems, available online at http://hannahlab.org/raymond-and-jiang-1990-long-lived-mesoscale-convective-systems/ (data access 31.01.2023).
- Weisman M.L., Evans C., Bosart L., 2013, The 8 May 2009 superderecho: analysis of a real-time explicit convective forecast, Weather and Forecasting, 28 (3), 863-892, DOI: 10.1175/WAF-D-12-00023.1.
- Whitney L.F., 1977, Relationship of the subtropical jet stream to severe local storms, Monthly Weather Review, 105 (4), 398-412, DOI: 10.1175/1520-0493(1977)1052.0.CO;2.
- Wimmer M., Raynaud L., Descamps L., Berre L., Seity Y., 2021, Sensitivity analysis of the convective‐scale AROME model to physical and dynamical parameters, Quarterly Journal of the Royal Meteorological Society, 148 (743), 920-942, DOI: 10.1002/qj.4239.
- Wrona B., Mańczak P., Woźniak A., Ogrodnik M., Folwarski M., 2022, Synoptic conditions of the derecho storm. Case study of the derecho event over Poland on August 11, 2017, Meteorology, Hydrology and Water Management, DOI: 10.26491/mhwm/152798.
- Zurbenko I.G., Sun M., 2016, Jet stream as a major factor of tornados in USA, Atmospheric and Climate Sciences, 6 (2), 236-253, DOI: 10.4236/acs.2016.62020.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccd94271-2d5a-4561-b0da-1aa26ea111d7