Identyfikatory
Warianty tytułu
Zastosowanie metody TOPSIS i algorytmów genetycznych do wielokryterialnej optymalizacji procesu obróbki elektroiskrowej z użyciem nanopłynów
Języki publikacji
Abstrakty
Electrical Discharge Machining (EDM) process with copper tool electrode is used to investigate the machining characteristics of AISI D2 tool steel material. The multi-wall carbon nanotube is mixed with dielectric fluids and its end characteristics like surface roughness, fractal dimension and metal removal rate (MRR) are analysed. In this EDM process, regression model is developed to predict surface roughness. The collection of experimental data is by using L9 Orthogonal Array. This study investigates the optimization of EDM machining parameters for AISI D2 Tool steel using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Analysis of variance (ANOVA) and F-test are used to check the validity of the regression model and to determine the significant parameter affecting the surface roughness. Atomic Force Microscope (AFM) is used to capture the machined image at micro size and using spectroscopy software the surface roughness and fractal dimensions are analysed. Later, the parameters are optimized using MINITAB 15 software, and regression equation is compared with the actual measurements of machining process parameters. The developed mathematical model is further coupled with Genetic Algorithm (GA) to determine the optimum conditions leading to the minimum surface roughness value of the workpiece.
Badania charakterystyk obróbki materiału ze stali narzędziowej AISI D2 przeprowadzono w procesie obróbki elektroiskrowej (EDM) z miedzianą elektrodą narzędziową. Zastosowano wielościenną nanorurkę węglową w połączeniu z płynami dielektrycznymi. Analizowano parametry charakteryzujące wynik procesu, takie jak chropowatość powierzchni, wymiary fraktalne i szybkość usuwania metalu. Opracowano model regresyjny procesu EDM pozwalający przewidzieć chropowatość powierzchni. Dane eksperymentalne zebrano w tablicy ortogonalnej L9. Do badania optymalizacji parametrów procesu EDM zastosowano wielokryterialną metodę TOPSIS. Stosując metodę analizy wariancji ANOVA i test F sprawdzano prawidłowość modelu regresyjnego i wyznaczono parametry wpływające istotnie na chropowatość powierzchni. Obrazy powierzchni obrabianych zarejestrowano w mikroskali stosując mikroskopię sił atomowych (AFM), a chropowatości powierzchni i wymiary fraktalne analizowano używając oprogramowania do spektroskopii. W kolejnym etapie parametry te były optymalizowane przy pomocy oprogramowania MINITAB 15, a równania regresji porównywane z wynikami rzeczywistych pomiarów parametrów procesu obróbki. Opracowany model matematyczny został następnie sprzężony z algorytmem genetycznym (GA) by określić warunki optymalne prowadzące do minimalizacji szorstkości powierzchni obrabianego elementu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
45--71
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, SRM University, Chennai-603203
autor
- Department of Mechatronics Engineering, SRM University, Chennai- 603203
Bibliografia
- [1] Guu Y.H., Hocheng H., Chou C.Y., Deng C.S.: Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel. Material Science and Engineering, 2003, Vol. 358, pp. 37-43.
- [2] Guu Y.H.: AFM surface imaging of AISI D2 tool steel machined by the EDM process. Applied Surface Science, 2005, Vol. 242, pp. 245-250.
- [3] Pecas P., Henriques E.: Electrical discharge machining using simple and powder mixeddielectric: the effect of the electrode area in the surface roughness and topography. Journal of Materials Processing Technology, 2008, Vol. 200, pp. 250-258.
- [4] Kansal H.K., Sehijpal Singh, Kumar P.: Parametric optimization of powder mixed electrical discharge machining by response surface methodology. Journal of Materials Processing Technology, 2005, Vol. 169, pp. 427-436.
- [5] Wong Y.S., Lim L.C., Iqbal Rahuman, Tee W.M.: Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. Journal of Materials Processing Technology, 1998, Vol. 9, pp. 30-40.
- [6] Te-Hua Fang, Win-Jin Chang, Cheng-I Weng: “Surface analysis of nanomachined films using atomic force microscopy”. Material Chemistry and Physics, Vol. 92 (2005), 379-383.
- [7] Jeng Yeau-Ren, Tsai Ping-Chi, Fang Te-Hua: Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy. Microelectronic Engineering, 2003, Vol. 65, pp. 406-415.
- [8] Asvestas P., Matsopoulos G.K., Nikita K.S.: A power differentiation method of fractal dimension estimation for 2-D signals. Journal of Visual Communication and Image Representation, 1998, Vol. 9, No. 4, pp. 392-400.
- [9] Kwasny W., Dobrzanski L.A.: Structure, physical properties and fractal character of surface topography of the Ti+TiC coatings on sintered high speed steel. Journal of Materials Processing Technology, 2005, Vol. 164-165, pp. 1519-1523.
- [10] Prabhu S., Vinayagam B.K.: AFM surface Investigation of Inconel 825 with Multi Wall Carbon Nanotube in Electrical Discharge Machining Process using Taguchi analysis. Archives of Civil and Mechanical Engineering Journal, 2011, Vol. 11, No. 1, pp. 149-170.
- [11] Mamalis A.G., Vogtlander L.O.G., Markopoulos A.: Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precision Engineering, 2004, Vol. 28, pp. 16-30.
- [12] Chakradhar D., Venugopal A.: Multi-Objective Optimization of Electrochemical machining of EN31 steel by Grey Relational Analysis. International Journal of Modeling and Optimization, 2011, Vol. 1, No. 2, pp. 113-117.
- [13] Al-Refaie A., Al-Durgham L., Bata N.: Optimal Parameter Design by Regression Technique and Grey Relational Analysis. Proceedings of the World Congress on Engineering III, WCE, London, 2010.
- [14] Oguzhan Yilmaz, Omer Eyercioglu, Nabil N.Z Gindy: A user-friendly fuzzy based system for the selection of electro discharge machining process parameters. Journal of Materials Processing Technology, 2006, Vol. 172, pp. 363-371.
- [15] Saaty T.L.: The Analytic Hierarchy Process. New York, McGraw Hill, 1980.
- [16] Ganesan H., Mohankumar G.: Optimization of Machining Techniques in CNC Turning Centre Using Genetic Algorithm. Arabian Journal of Science and Engineering, 2013, Vol. 38, pp. 1529-1538.
- [17] Grzesik W., Brol S.: Wavelet and fractal approach to surface roughness characterization after finish turning of different workpiece materials. Journal of Materials Processing Technology, 2009, Vol. 209, No. 5, pp. 2522-2531.
- [18] Arun Kumar Parida, Bharat Chandra Routara: Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method. International Scholarly Research Notices, 2014, Vol. 2014.
- [19] Yoon K.P., Hwang C.L.: Multiple Attribute Decision Making. Sage, Beverly Hills, California, USA, 1995.
- [20] Nayak B.B., Mahapatra S.S.: Multi-response optimization of WEDM process parameters using the AHP and TOPSIS method. International Journal on Theoretical and Applied Research in Mechanical Engineering, 2013, Vol. 2, No. 3, pp. 109-215.
- [21] Gadakh V.S.: Parametric optimization of wire electric discharge machining using TOPSIS method. Advances in Production Engineering and Management, 2012, Vol. 7, No. 3, pp. 157-164.
- [22] Tripathy S., Tripathy D.K.: Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and Grey relational analysis. Engineering Science and Technology, an International Journal, 2015.
- [23] Senthil P., Vinodh S., Singh A.K.: Parametric optimisation of EDM on Al-Cu/TiB2 in-situ metal matrix composites using TOPSIS method. International Journal of Machining and Machinability of Materials, 2014, Vol. 16, No. 1, pp. 80-94.
- [24] Dewangan S., Gangopadhyay S., Biswas C.K.: "Study of surface integrity and dimensional accuracy in EDM using Fuzzy TOPSIS and sensitivity analysis”. Measurement, 2015, Vol. 63, pp. 364-376.
- [25] Kuldip Singh Sangwan, Sachin Saxena, Girish Kant: Optimization of Machining Parameters to Minimize Surface Roughness using Integrated ANN-GA Approach. Procedia CIRP, 2015, Vol. 29, pp. 305-310.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccd8092d-910f-4e76-a6cc-9d3841b71c87