PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Spinal sections and regional variations in the mechanical properties of the annulus fibrosus subjected to tensile loading

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The annulus fibrosus is the primary load-bearing component of the intervertebral disc responsible for proper transfer of loads in the spine. The aim of this study was to determine selected mechanical parameters of multilayer specimens of the annulus fibrosus of the intervertebral disc during uniaxial tensile loading. The anatomical location (anterior/posterior) of the test specimens of the annulus fibrosus and its location along the length of the spine were analysed to determine their impact on the maximum failure force, stiffness, the value of Young’s modulus and dissipated energy. The results indicated high energy losses over the five consecutive precondition loops while the value of the force remained at a constant level. The thoracic and lumbar specimens showed the highest values of the parameters analysed. There were also significant changes depending on the anatomical region of the intervertebral disc, where anterior specimens demonstrated higher mechanical values compared to posterior specimens.
Rocznik
Strony
51--59
Opis fizyczny
Bibliogr. 40 poz., rys., wykr. tab.
Twórcy
autor
  • Division of Biomedical Engineering and Experimental Mechanics, Department of Mechanical Engineering, Wrocław University of Technology, Poland
autor
  • Division of Biomedical Engineering and Experimental Mechanics, Department of Mechanical Engineering, Wrocław University of Technology, Poland
Bibliografia
  • [1] ACAROGLU E.R., IATRIDIS J.C., SETTON L.A., FOSTER R.J., MOW V.C., WEIDENBAUM M., Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus, Spine, 1995, 20(24), 2690–2701.
  • [2] ADAMS M., DOLAN P., Spine biomechanics, J. Biomech., 2005, 38, 1972–1983.
  • [3] ADAMS M.A., GREEN T.P., Tensile properties of the annulus fibrosus. I. The contribution of fiber-matrix interactions to tensile stiffness and strength, Eur. Spine J., 1993, 2, 203–208.
  • [4] ALINI M., EISENSTEIN S.M., ITO K., LITTLE C., KETTLER A.A., MASUDA K., MELROSE J., RALPHS J., STOKES I., WILKE H.J., Are animal models useful for studying human disc disorders/ degeneration?, Eur. Spine J., 2007, 17, 1, 2–19.
  • [5] AMBARD D., CHERBLANC F., Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation, Ann. Biomed. Eng., 2009, 37(11), 2256–2265.
  • [6] BASS E.C., ASHFORD F.A., SEGAL M.R., LOTZ J.C., Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation, Ann. Biomed. Eng., 2004, 32(9), 1231–1242.
  • [7] BEATTIE P., Current Understanding of Lumbar Intervertebral Disc Degeneration: A Review With Emphasis Upon Etiology, J. Orthop. Sports Phys. Ther., 2008, 38(6), 329–340.
  • [8] BECKSTEIN J.C., SEN S., SCHAER T.P., VRESILOVIC E.J., ELLIOTT D.M., Comparison of animal discs used in disc research to human lumbar disc axial compression mechanics and glycosaminoglycan content, Spine, 2008, 33(6), 166–173.
  • [9] CASSIDY J.J., HILTNER A., BAER E., Hierarchical structure of the intervertebral disc, Connective Tissue Res., 1989, 23, 75–88.
  • [10] COSTI J.J., HEARN T.C., FAZZALARI N.L., The effect of hydration on the stiffness of intervertebral discs in an ovine model, Clin. Biomech., 2002, 17, 446–455.
  • [11] EBARA S., IATRIDIS J.C., SETTON L.A., FOSTER R.J., MOW V.C., WEIDENBAUM M., Tensile properties of nondegenerate human lumbar anulus fibrosus, Spine, 1996, 21(4), 452–461.
  • [12] ELLIOTT D.M., SETTON L.A., Anisotropic and inhomogeneous tensile behaviour of the human annulus fibrosus: experimental measurements and material model predictions, J. Biomech. Eng., 2001, 123, 256–263.
  • [13] FUJITA Y., DUNCAN N.E., LOTZ J.C., Radial tensile properties of the lumbar annulus fibrosis are site and degeneration dependent, J. Orthop. Res., 1997, 15, 814–819.
  • [14] GALANTE J.O., Tensile properties of the human lumbar annulus fibrosus, Acta Orthop. Scand., 1967, Suppl. 100, 1–91.
  • [15] GREEN T.P., ADAMS M.A., DOLAN P., Tensile properties of the annulus fibrosus. II. Ultimate tensile strength and fatigue life, Eur. Spine J., 1993, 2, 209–214.
  • [16] HOLZAPFEL G.A., SCHULZE-BAUER C.A.J., FEIGL G., REGITNIG P., Single lamellar mechanics of the human lumbar anulus fibrosus, Biomech. Model. Mechanobiol., 2005, 3, 125–140.
  • [17] HSU C.C., TSAI W.C., SHAU Y.W., LEE K.L., HU C.F., Altered energy dissipation ratio of the plantar soft tissues under the metatarsal heads in patients with type 2 diabetes mellitus: a pilot study, Clin. Biomech., 2007, 22, 67–73.
  • [18] HUYGHE J.M., Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations, An. Acad. Bras. Cienc., 2010, 82(1), 145–151.
  • [19] INOUE H., Three-dimensional architecture of lumbar intervertebral discs, Spine, 1981, 6(2), 139–146.
  • [20] KATUNIN A., The conception of the fatigue model for layered composites considering thermal effects, ACME, 2011, 11(2), 333–343.
  • [21] MARCHAND F., AHMED A.M., Investigation of the laminate structure of lumbar disc anulus fibrosus, Spine, 1990, 15(5), 402–410.
  • [22] MISTERSKA E., JANKOWSKI R., GŁOWACKI M., Quebec Back Pain Disability Scale, Low Back Ouctome Score and Revised Oswestry Low Back Pain Disability Scale for Patients with Low Back Pain due to degenerative disc disease, Spine, 2011, 36(26), E 1722–1729.
  • [23] NUCKLEY D.J., KRAMER P.A., DEL ROSARIO A., FABRO N., BARAN S.Z., CHING R.P., Intervertebral disc degeneration in a naturally occurring primate model: radiographic and biomedical evidence, J. Orthop. Res., 2008, 26, 1283–1288.
  • [24] PEZOWICZ C., Analysis of selected mechanical properties of intervertebral disc annulus fibrosus in macro and microscopic scale, Journal of Theoretical and Applied Mechanics, 2010, 48(4), 917–932.
  • [25] PEZOWICZ C.A., ROBERTSON P.A., BROOM N.D., Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state, J Anat., 2005, 207(4), 299–312.
  • [26] PORĘBSKA R., MAZURKIEWICZ S., Dissipated energy in polimeric composites, (in Polish), Czasopismo Techniczne Politechniki Krakowskiej, 2009, 3, 245–249.
  • [27] RODRIGUES S.A., WADE K.R., THAMBYAH A., BROOM N.D., Micromechanics of annulus-end plate integration in the intervertebral disc, Spine J., 2012, 12(2), 143–150.
  • [28] SCHULTZ A.B., ASHTON-MILLER J.A., Biomechanics of the human spine, [in:] Van C. Mow, W.C. Hayes (eds.), Basic Orthopeadic Biomechanics, Raven Press, 1991, 337–374.
  • [29] SHANKAR H., SCARLETT J., ABRAM S.E., Anatomy and pathophysiology of intervertebral disc disease, Tech. Reg. Anesth. Pain Manag., 2009, 13, 67–75.
  • [30] SKAGGS D.L., WEIDENBAUM M., IATRIDIS J.C., RATCLIFFE A., MOW V.C., Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus, Spine, 1994, 19(12), 1310–1319.
  • [31] SMIT T.H., The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations, Eur. Spine J., 2002, 11, 137–144.
  • [32] SZOTEK S., SZUST A., PEZOWICZ C., MAJCHER P., BĘDZIŃSKI R., Animal models in biomechanical spine investigations, Bull. Vet. Inst. Puławy, 2004, 48(2), 163–168.
  • [33] TSUJI H., HIRANO N., OHSHIMA H., ISHIHARA H., TERAHATA N., MOTOE T., Structural variation of the anterior and posterior annulus fibrosis in the development of human lumbar intervertebral discs: a risk factor for intervertebral disc rupture, Spine, 1993, 18, 204–210.
  • [34] WADE K.R., ROBERTSON P.A., BROOM N.D., A fresh look at the nucleus-endplate region: new evidence for significant structural integration, Eur. Spine J., 2011, 20(8), 1225–1232.
  • [35] WANG Y., CHEN H.B., ZHANG L., ZHANG L.Y., LIU J.C., WANG Z.G., Influence of degenerative changes of intervertebral disc on its material properties and pathology, Chin. J. Traumatol., 2012, 15(2), 67–76.
  • [36] WHITE A.A., PANJABI M.M., Clinical biomechanics of the spine, Lippincott (Philadelphia), 1990.
  • [37] WILKE H.J., WENGER K., CLAES L., Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants, Eur. Spine J., 1998, 7, 148–154.
  • [38] ŻAK M., Dissipated energy in annulus fibrosus of intervertebral disc, (in Polish), Aktualne Problemy Biomechaniki, 2010, 4, 285–288.
  • [39] ŻAK M., KUROPKA P., KOBIELARZ M., DUDEK A., KALETAKURATEWICZ K., SZOTEK S., Determination of the mechanical properties of the skin of pig foetuses with respect to its structure, Acta Bioeng. Biomech., 2011, 13(2), 38–43.
  • [40] ŻAK M., PEZOWICZ C., The energy dissipation of multilamellar annulus fibrosus of intervertebral disc, Journal of Biomechanics, 2012, 45 Supplement 1, S573.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccd704d3-bf8f-4696-9547-5cb28f70500f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.