PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of structure and shear/peel strength of refill friction stir spot welded 7075-t6 aluminium alloy joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an analysis of the macrostructure and mechanical properties of spot welds of joints made by Refill Friction Spot Stir Welding (RFSSW) method. RFSSW is a relatively new technology that is gaining wider use, not only in the automotive and aviation industries because it is a less energy intensive method than resistance spot welding. The primary focus of the article is the effect of welding time on the quality of the welded joints of sheet metal using the aforementioned method. The research was conducted on a joint between two pieces of sheet metal of various thicknesses (1.6 mm and 0.8 mm) made of a common aviation grade aluminium alloy 7075-T6 Alclad. Metallographic sections of select variants were made in order to analyze the structure of the joint. Strength tests with a static load were conducted in different loading configurations. A traditional tensile strength test was conducted on the lap joint, which revealed a complex stress state within the joint and an analogous test was conducted with the use of a stiffening holder that ensured a pure shear state in the joint. Peel tests were also performed on the lap joints with using a special holder.
Twórcy
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1.Amancio-Filho S.T. On the feasibility of friction spot joining in magnesium/fiber reinforced polymer composite hybrid structures. Mater. Sci. Eng. 2011, A528, 3841–3848.
  • 2.Arul S.G., Miller S.F., Kruger G.H., Pan T.Y., Mallick P.K., Shih A.J. Experimental study of joint performance in spot friction welding of 6111-T4 aluminum alloy. Sci. Technol. Weld Join 2008, 13, 629–637.
  • 3.Azarsa E., Mostafapour A. On the feasibility of producing polymer-metal composites via novel variant of friction stir processing. J. Manuf. Proc. 2013, 15, 682–688.
  • 4.Bilici M.K. Application of polypropylene. Mater. Des. 2012, 35, 113–119.
  • 5.Bilici M.K., Yukler A.I. Influence of tool geometry and process parameters on macrostructure and static strength in friction stir spot welded polyethylene sheets. Mater. Des. 2012, 33, 145–152.
  • 6.Buffa G., Fratini L., Piacentini M. On the influence of tool path in friction stir spot welding of aluminum alloys. Journal of Materials Processing Technology, 2008, 208(1−3): 309−317.
  • 7.Choi D.H., Ahn B.W., Lee C.Y., Yeon Y.M., Song K.U., Jung S.B. Effect of pin shapes on joint characteristics of friction stir spot welded AA5J32 sheet. Mater Trans 2010;51(5):1028–32.
  • 8.Dashatan S.H., Azdast T., Ahmadi S., Bagheri A. Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater. Des. 2013, 45, 135–141.
  • 9.Davis J.R. Aluminium and aluminium alloys. ASM International; 1993.
  • 10.Di S., Yang X., Fang D., Luan G. The infl uence of zigzag curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy. Mater Chem Phys 2007;104:244–8.
  • 11.Eggers J. Refill Friction Stir Spot Welding (RFSSW). Welding aluminium accurately and consistently. HWI Weld Times 5/2012, s. 3.
  • 12.Hancock R. Friction welding of aluminum cuts energy cost by 99%. Welding Journal, 2004, 83: 40−45.
  • 13.Hirasawa S., Badarinarayan H., Okamoto K., Tomimura T., Kawanami T. Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method. J. Mater. Proc. Technol. 2010, 1455–1463.
  • 14.Kenichiro M., Niels B., Livan F., Micari F., Tekkaya A.E. Joining by plastic deformation. CIRP Ann. Manuf. Technol. 2013, 62, 673–694.
  • 15.Khaled, T. An Outsider Looks at Friction Stir Welding. Fed. Aviat. Adm. 2005, 25, 27–29.
  • 16.Kwiatkowski M.P., Kłonica M., Kuczmaszewski J., Satoh S. Comparative Analysis of Enegetic Properties of Ti6Al4V Titanium and EN-AW-2017A(PA6) Aluminum Alloy Surface Layers for an Adhesive Bonding Application. Ozone: Science & Engineering, 2013, 35, 220–228.
  • 17.Lohwasser D. Application of Friction Stir Welding for aircraft industry. In Proceedings of the 2nd International Symposium on Friction Stir Welding, Gothenburg, Sweden, 27–29 June 2000.
  • 18.Merzoug M., Mazari M., Berrahal L., Imad A. Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys. Mater. Des. 2010, 31, 3023–3028.
  • 19.Mishra R. S., MA Zong-yi M. A. Friction stir welding and processing. Material Science and Engineering R, 2005, 50(1−2): 1−78.
  • 20.Mishra R.S., Ma Z. Friction Stir Welding and processing Materials Science and Engineering. Reports 2005, 50, 1–78.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccd6e6ea-71b0-4589-938e-ebbbb6a85b2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.