PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of electrical heating on tribocharging and triboelectrostatic beneficiation of fly ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Triboelectrostatic beneficiation is an effective technique to remove unburned carbon from fly ash. The purpose of this study is to enhance the particles tribocharging, and improve the efficiency of removal unburned carbon from fly ash using electrical heating. An experimental system with electrical heating was established to realize the tribocharging measurement and fly ash triboelectrostatic beneficiation. The experimental material collected from a thermal power station was fly ash with an average loss on ignition of 20.76%. The operating conditions were electric field voltage of 40KV and air flow rate ranging from 1.7 to 4.25 m/s. The influence of heating temperature and heating position on tribocharging and triboelectrostatic beneficiation was discussed. The feasibility of electrical heating was evaluated by the charge-to-mass ratio (CMR), loss on ignition (LOI) and removal unburnt carbon rate (RCR). The results indicate that the increasing of collision probability for heated particles can improve the charging efficiency. The heating temperature related to gas moisture content and particles dielectric constant is inversely proportional to the LOI of ash, whereas it is opposite for the RCR. The heating position has an effect on the CMR and RCR because of changed contact time between charged particles and compressed air. The optimum conditions are the air flow rate of 4.25 m/s, heating temperature of 90℃. Heating tube III is suitable to install electrical heating system. The electrical heating is proved to be effective to improve the efficiency of fly ash triboelectrostatic beneficiation.
Rocznik
Strony
896--905
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
  • Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
  • Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
autor
  • Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, 221116, Jiangsu, China
Bibliografia
  • CAO, Y. J., LI, G.S., LIU, J. T., ZHANG, H. J.,ZHAI, X., 2012. Removal of unburned carbon from fly ash using a cyclonic-static microbubble flotation column. Journal of the Southern AfricanInstitute of Mining and Metallurgy, 112, 891-896.
  • HUANG, Y., TAKAOKA, M.,TAKEDA, N, 2003. Removal of unburned carbon from municipal solid waste fly ash by column flotation. Waste Management, 23, 307-313.
  • MCMAHAN, L. G., KENNETH, J. C., YEE, S., RICHARD, P. K., MERCEDES, M. V., JOHN M. A., MICHAEL, V. C.,PAUL, H. Z, 2002. Physical cleaning of high carbon fly ash. Fuel Processing Technology, 76, 11-21.
  • YAO Z.T., Ji X.S., SARKER, P.K., TANG J.H., GE L.Q., XIA M.S., XI, Y.Q., 2015. A comprehensive review on the applications of coal fly ash, Earth-Science Reviews, 141, 105-121.
  • YAO, Z.T., XIA, M.S., SARKER P.K.,CHEN T., 2014. A review of the alumina recovery from coal fly ash, with a focus in China,120,74-85.
  • DING,J., MA, S.,SHEN, S., XIE, Z, ZHENG, S., ZHANG, Y., 2017. Research and industrialization progress of recovering alumina from fly ash: A concise review, Waste Management, 60, 375-387.
  • HAN,G., YANG,S.,PENG,W., 2018. Enhanced recycling and utilization of mullite from coal fly ash with a flotation and metallurgy process, Journal of Cleaner Production, 178, 804-813.
  • HWANG, J. Y., SUN, X., Li, Z, 2002. Unburned carbon from fly ash for mercury adsorption: I. Separation and characterization of unburned carbon. Journal of Minerals and Materials Characterization and Engineering, 1, 39-60.
  • BAN, H., LI, TIAN,X., HOWER, J. C., SCHAEFER, J. L., STENCEL, J. M., 1997. Dry triboelectrostatic beneficiation of fly ash. Fuel, 76, 801-805.
  • SOONG, Y., SCHOFFSTALL, M. R., LINK, T. A, 2001. Triboelectrostatic beneficiation of fly ash. Fuel, 80, 879-884.
  • LING, Z., YOUJUN,T., LU, Y., 2018. Research on flow field and kinematic characteristics of fly ash particles in rotary triboelectrostatic separator, Powder Technology, 336, 168-179.
  • LING,Z.,YOUJUN,T., DONGPING, T., ZHANG,W.,LU,Y., 2018. Experimental study and numerical simulation on fly ash separation with different plate voltages in rotary triboelectrostatic separator, Physicochemical Problemsof Mineral Processing, 54, 722-731.
  • KIM, J. K., CHO, H. C.,KIM, S.C., 2001. Removal of unburned carbon from coal fly ash using a pneumatic triboelectrostatic separator. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 36, 1709-1724.
  • LI, H. S., CHEN, Y. H., WU, K. B., ZHANG, X. X., 2013. Particle Collision during the tribo-electrostatic beneficiation of fly ash based on infrared thermography. Journal of the Southern African Institute of Mining and Metallurgy, 113, 899-904.
  • KIM, J. K.,CHO, H.C., KIM, S.C., 2000. Electrostatic beneficiation of fly ash using anejector-tribocharger. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 35, 357-377.
  • FEDERICO, C., NOTARNICOLA, M., LIBERTI, L., STENCEL, J., 2009. The role of weathering on fly ash charge distribution during triboelectrostatic beneficiation. Journal of Hazardous Materials, 164, 683–688.
  • H. S. Li, Y. H. CHEN, Y. M. ZHAO, X. X. ZHANG, K. B. W., 2015. The Effect of the Cross-Sectional Shape of Friction Rodson the Triboelectrostatic Beneficiation of Fly Ash, International Journal of Coal Preparation and Utilization, 35, 113-124.
  • CANGIALOSI, F., NOTARNICOLA, M.,, LIBERTI,L., CARAMUSCIO, P., BELZ, G.,, GURUPIRA, T. Z., STENCEL, J. M., 2006. Significance of surface moisture removal on triboelectrostatic beneficiation of fly ash, Fuel, 85, 2286-2293.
  • KOLEHMAINEN, J., SIPPOLA, P., RAITANEN, O., OZEL, A., BOYCE, C. H., SAARENRINNE, P., SUNDARESAN, S., 2017. Effect of humidity on triboelectric charging in a vertically vibrated granular bed: Experiments and modeling, Chemical Engineering Science, 173, 363-373.
  • TAGHAVIVAND, M., CHOI, K., ZHANG, L., 2017. Investigation on drying kinetics and tribocharging behaviour of pharmaceutical granules in a fluidized bed dryer, Powder Technology, 316, 171-180.
  • BIEGAJ, K. W., ROWLAND, M. G., LUKAS, T. M., HENG, J. Y. Y., 2017. Surface Chemistry and Humidity in Powder Electrostatics: A Comparative Study between Tribocharging and Corona Discharge, Acs Omega, 4, 1576-1582.
  • SIPPOLA, P., KOLEHMAINEN, J., OZEL,A., LIU, X., SAARENRINNE, P., SUNDARESAN, S., 2018. Experimental and numerical study of wall layer development in a tribocharged fluidized bed, Journal of Fluid Mechanics, 849, 860-884.
  • LI, H., CHEN, Y., ZHANG, X., ZHAO, Y., TAO,Y., LI, C. H., HE, X., 2016. Experimental study on triboelectrostatic beneficiation of wet fly ash using microwave heating. Physicochemical Problems of Mineral Processing. 52, 328−341.
  • SOMMERFELD, M., ZIVKOVIC,G., 1992. Recent advances in the numerical simulation of pneumatic conveying through pipe systems. Elsevier Amsterdam., 201, 201−212.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccd6b18d-612c-4468-9fb1-fc6f8eb45dbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.