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Abstract

We investigate the correspondence between model checking
of af-AMCi and ATLir , on the example of reachability. We
identify some of the reasons for the fact that these logics
are of uncomparable expressivity. These observations form
the basis for a novel method for underapproximating ATLir

by means of fixed-point calculations. We introduce a special
version of the next-step operator, called Persistent Imperfect
Next-Step Operator 〈·〉F and show how it can be used to
define a new version of reachability that carries to ATLir .

Keywords: ATL, model checking, approximation

Streszczenie

Dolna Aproksymacja Bezpamięciowego ATL
o Niepełnej Informacji

W pracy badane są związki pomiędzy weryfikacją modelową
Bezpamięciowej Logiki Temporalnej Czasu Alternującego z
Niepełną Informacją ATLir i Epistemicznego Alternującego
Mu-Rachunku af-AMCi. Jak pokazano, naturalne uogólnie-
nia pojęcia osiągalności z ATLir -a do af-AMCi nie przynoszą
dobrych efektów: osiągalność w af-AMCi nie pociąga za sobą
osiągalności w ATLir . Po zidentyfikowaniu części powodów
dla których tak się dzieje, zaproponowano nową wersję ope-
ratora następnego kroku, który pozwala na przybliżanie osią-
galności w ATLir przy pomocy obliczeń stałopunktowych.

Słowa kluczowe: ATL, weryfikacja, aproksymacja



1 Introduction

1 Introduction

Multi-agent systems consist of multiple entities called agents, often as-
sumed to be intelligent, and able to interact with each other as well as
with the environment. More and more practical problems are being mod-
eled and solved under paradigms related to multi-agent systems. The
examples of their industrial applications include space mission planning
and air control logistics and production planning

Given the proliferation of multi-agent systems in the modern world,
their automated verification, i.e., ensuring of the compliance with their
specification, becomes an important task. Some model checking tools
(e.g., MCK [5], MCMAS [6]) have been created or extended to accept
multi-agent systems as their input models; some tools aim at the ver-
ification of programs specified in multi-agent programming languages
(e.g., Agentspeak in Jason [2]).

In this paper we deal with the properties specified in Alternating-
Time Temporal Logic [1] (ATL). In its basic version, this logic allows
to specify strategic properties of groups of agents under assumption
of the perfect knowledge about the state of affairs, i.e., an agent is
able to observe the world in its entirety. One can argue that such a
scenario is rather unrealistic, hence several versions of semantics have
been introduced [7] to take into account the limited knowledge of the
agents. This, however, typically leads to a greater complexity of the
task of model checking. Model checking of ATL can be done in linear
time in the size of the model and the formula.

In this paper we investigate a certain version of ATL, where the
agents are assumed to be memoryless and of limited knowledge, denoted
by ATLir . Model checking of ATLir is ∆P

2 –complete [7]. Moreover,
there is no clear correspondence between the validity of the formulae
specified in ATLir and their natural fixed-point counterparts specified
in Alternating Epistemic Mu-Calculus [3] (AMCi, for short). We analyse
the reasons for this lack of correspondence and propose a novel method
for underapproximating ATLir by means of fixed-point calculations. To
this end we introduce a special version of the next-step operator, called
Persistent Imperfect Next-Step Operator 〈·〉F and show how it can be
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used to define a new version of reachability that carries to ATLir .
To the best knowledge of the authors this is the first successful at-

tempt at underapproximating ATLir using fixed-point methods.

1.1 Related Work

Alternating-Time Temporal Logic and Alternating Mu-Calculus (AMC)
are introduced in [1]. ATL deals with strategic abilities of coalitions of
agents, while AMC combines the next-step operator of ATL with the
operator of the least fixed-point µ. In [1] the authors show that AMC is
strictly more expressive than the original ATL. However, the semantics
of ATL is also considered in several flavours that rely upon the definition
of strategy. In [7] a natural classification of these versions is presented,
depending on (1) whether the agents make a decision about the next
step based on the history of the visited states or based on the current
state; (2) whether the agents can observe the entire state of affairs or
only their local epistemic neighbourhood. In this paper we focus on the
version of ATL with memoryless strategies and the agents that have
a limited knowledge about the world, i.e., ATLir in the nomenclature
of [7]. In [3] Alternating Epistemic Mu-Calculus, a logic built on top of
the next-step operator of ATLir , using the least fixed-point operator, is
presented and investigated; it is shown that the expressivity of ATLir is
incomparable with the expressivity of af-AMCi.

2 Preliminaries

Let us briefly recall the basic notions and properties of ATLir and
af-AMCi.

2.1 Imperfect Information Concurrent Game Structures

We interpret the presented logics in transition systems equipped with
two relations: one modeling the transitions between the states and the
other explicitly connecting the states that are indistinguishable from an
agent’s point of view.
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2 Preliminaries

Definition 1 (ICGS). We call an Imperfect Information Concurrent
Game Structure a tuple M = 〈Agt,Q,Π, π,Acts, d, o, {∼a | a ∈ Agt}〉,
where:

• Agt = {1, . . . , k} is a finite set of all the agents, for some k ∈ N,

• Q is a finite set of states,

• Π is a set of atomic propositions,

• π : Π→ P(Q) is a labeling function,

• Acts is a finite set of atomic actions,

• d : Agt×Q → P(Q) is a protocol function,

• o :
⋃
q∈Q{(q, α1, . . . , αk) | ∀1≤a≤kαa ∈ d(a, q)} → Q is a transition

function,

• ∼a⊆ Q × Q is an equivalence relation such that d(q, a) = d(q′, a)
if q ∼a q′, called the indistinguishability relation, for all a ∈ Agt.

For any agent a ∈ Agt and state q ∈ Q we write da(q) instead of
d(a, q) and assume that da(q) 6= ∅. The set da(q) consists of all the
actions available to the agent a in the state q. The state o(q, α1, . . . , αk)
is the outcome of simultaneously executing in the state q the actions
α1, . . . , αk by the respective agents 1, . . . , k. We define the coalition pro-
tocol function dA for a group A ⊆ Agt by putting dA(q) =

∏
a∈A da(q),

for each q ∈ Q.
We call a strategy of a ∈ Agt a function sa : Q → Acts satisfying

sa(q) ∈ d(a, q) and q ∼a q′ =⇒ sa(q) = sa(q
′), for all q, q′ ∈ Q. Intu-

itively, a strategy for an agent assigns to every state an action consistent
with the protocol and the indistinguishable states are assigned the same
actions. This type of strategy is also called imperfect information, im-
perfect recall strategy [7]. A set of strategies sA, one per each agent from
A ⊆ Agt, is called a collective strategy for A. By sA|a we denote the
strategy for agent a ∈ A selected from sA. The set of all the collective
strategies for A is denoted by ΣA. A partial function s′A : Q 7→ Acts is
called a partial strategy for A if s′A ⊆ sA for some strategy sA ∈ ΣA. If
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s′A and s′′A are partial strategies such that s′A ⊆ s′′A, then we say that s′′A
extends s′A.

We call a path an infinite sequence of states λ = q0q1q2 . . . such
that for each i ∈ N there exist actions α1, . . . , αk ∈ Acts such that
qi+1 = o(qi, α1, . . . , αk). If sA ∈ ΣA and for each i ∈ N there exist
α1, . . . , αk ∈ Acts satisfying λi+1 = o(λi, α1, . . . , αk) and αa = sA|a(λi)
for all a ∈ A, then λ is consistent with sA. Intuitively, λ is consistent
with sA if it is the outcome of following the strategy sA by the group A
while all the remaining agents have free hand in selecting the actions.
The set of all the paths starting from the state q ∈ Q and consistent
with the strategy sA is denoted by outM(q, sA). We define the outcome
of sA in q as out irM(q, sA) =

⋃
a∈A

⋃
q′∼aq

outM(q′, sA) if A 6= ∅ and let
out irM(q, s∅) = outM(q, s∅).

Let us fix M = 〈Agt,Q,Π, π,Acts, d, o, {∼a | a ∈ Agt}〉.

2.2 ATL with Imperfect Information and Recall

Let us present the language of Alternating-Time Temporal Logic with
Imperfect Information and Recall (ATLir , for short).

Definition 2. The language of ATLir is defined by the following gram-
mar:

φ ::= p | ¬φ | φ ∨ φ | 〈〈A〉〉 © φ | 〈〈A〉〉2φ | 〈〈A〉〉φUφ,

where p ∈ Π and A ⊆ Agt.

We read 〈〈A〉〉ξ as “A can enforce ξ”, © as “in the next state”, 2 as
“now and always in the future”, and U as “until”. To signify the fact
that we use the semantics based on imperfect information and imperfect
recall, we denote the satisfaction relation by |=ir .

Definition 3. Let q ∈ Q. The semantics of ATLir is defined as follows:

• M, q |=ir p iff q ∈ π(p),

• M, q |=ir ¬φ iff M, q 6|=ir φ,

• M, q |=ir φ ∨ ψ iff M, q |=ir φ or M, q |=ir ψ,
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2 Preliminaries

• M, q |=ir 〈〈A〉〉 © φ iff there exists a collective strategy sA ∈ ΣA

s.t. for all λ ∈ out irM(q, sA) we have M, λ1 |=ir φ,

• M, q |=ir 〈〈A〉〉2φ iff there exists a collective strategy sA ∈ ΣA s.t.
for all λ ∈ out irM(q, sA) and every i ∈ N we have M, λi |=ir φ,

• M, q |=ir 〈〈A〉〉ψUφ iff there exists a collective strategy sA ∈ ΣA s.t.
for each λ ∈ out irM(q, sA) there exists i ∈ N for which M, λi |=ir φ
and M, λj |=ir ψ for all 0 ≤ j < i,

where p ∈ Π, φ, ψ ∈ ATL, and A ⊆ Agt.

We also introduce the derived modality 3φ ≡ >Uφ, read as “now
or sometime in the future”. It is easy to see that M, q |=ir 〈〈A〉〉3φ iff
there exists a collective strategy sA ∈ ΣA such that following each path
λ ∈ out irM(q, sA) leads to some state satisfying φ. In this case we say
that φ is ir–reachable from q.

2.3 Alternating Epistemic Mu-Calculus

We now present the language of Alternating Epistemic Mu-Calculus
(AMCi, for short).

Definition 4. Let Vars be a set of second-order variables ranging over
P(Q). The language of AMCi is defined by the following grammar:

φ ::= p | X | ¬φ | φ ∨ φ | 〈A〉φ | µX(φ) | Ka,

where p ∈ Π, X ∈ Vars, a ∈ Agt, A ⊆ Agt, and the formulae are X–
positive, i.e., each free occurrence of X is in the scope of an even number
of negations.

As usual, µ denotes the least fixed-point operator. We define the
dual of µ as νX(φ(X)) ≡ ¬µX(¬φ(¬X)); ν corresponds to the greatest
fixed-point operator. A formula of AMCi is alternation-free if in its
positive normal form it does not contain occurrences of ν (µ, resp.) on
any syntactic path from an occurrence of µX (νX, resp.) to a bound
occurrence of X (cf. [1]). Similarly to [3], we consider here only the
alternation-free fragment of AMCi, denoted by af-AMCi.
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We evaluate the formulae of af-AMCi with respect to the valuations
of Vars, i.e., functions V : Vars → P(Q). We denote the set of all the
valuations of Vars by Vals. If X ∈ Vars, Z ⊆ Q, and V ∈ Vals, then by
V[X := Z] we denote the valuation of Vars such that V[X := Z](Y ) =
V(Y ) for Y 6= X and V[X := Z](X) = Z.

We define the semantics of af-AMCi using the denotation function
that assigns to each formula φ ∈ af-AMCi the set of states [[φ]]Mµir,V where
φ is true under the valuation V ∈ Vals.

Definition 5. Let q ∈ Q and V ∈ Vals. The denotation function for
af-AMCi is defined as follows:

• [[p]]Mµir,V = π(p),

• [[X]]Mµir,V = V(X),

• [[¬φ]]Mµir,V = Q \ [[φ]]Mµir,V ,

• [[φ ∨ ψ]]MV = [[φ]]Mµir,V ∪ [[ψ]]Mµir,V ,

• [[〈A〉φ]]Mµir,V = {q ∈ Q | ∃sA ∈ ΣA ∀λ ∈ out irM(q, sA)M, λ1 |=ir φ},

• [[µX(φ)]]Mµir,V =
⋂
{Z ⊆ Q | [[φ]]Mµir,V[X:=Z] ⊆ Z},

• [[Kaφ]]Mµir,V = {q ∈ Q | ∀q′(q′ ∼a q implies q′ ∈ [[φ]]Mµir,V)},
where φ ∈ af-AMCi, p ∈ Π, X ∈ Vars, a ∈ Agt, and A ⊆ Agt.

We write M, q |=µ,V
ir φ iff q ∈ [[φ]]Mµir,V , for each q ∈ Q and φ ∈

af-AMCi. If φ is a sentence, i.e., it contains no free variables, then
its validity does not depend on the valuation V and we simply write
M, q |=µ

ir φ and [[φ]]Mµir. We interpret Kaφ as “the agent a knows φ”. For
each A ⊆ Agt we define the derived group knowledge modality everybody
knows as EAφ ≡

∨
a∈AKaφ. Recall thatM, q |=µ,V

ir EAφ iffM, q′ |=µ,V
ir φ

for all q′ ∼AE q, where ∼AE=
⋃
a∈A ∼a.

Model checking of ATLir is ∆P
2 –complete [7]. Model checking of

af-AMCi can be done in linear time with respect to the number of
transitions for the formulae with coalitions that do not exceed 2; in
general, model checking of af-AMCi is NP–hard and conjectured to be
∆P

2 –complete [3].
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3 Underapproximating ATLir

3 Underapproximating ATLir

Following [7], we denote the satisfaction in the vanilla ATL and AMC
by |=IR and |=µ, respectively. Vanilla ATL can be embedded into AMC
using the translation that assigns to any formula φ ∈ ATL the for-
mula T RIR(φ) ∈ AMC defined recursively as follows [1]: T RIR(p) =
p, T RIR(¬φ) = ¬T RIR(φ), T RIR(φ ∨ ψ) = T RIR(φ) ∨ T RIR(ψ),
T RIR(〈〈A〉〉 © φ) = 〈A〉T RIR(φ), T RIR(〈〈A〉〉2φ) = νX(T RIR(φ) ∧
〈A〉X), T RIR(〈〈A〉〉ψUφ) = µX(T RIR(φ) ∨ (T RIR(ψ) ∧ 〈A〉X)), where
p ∈ Π, φ, ψ ∈ ATL, and A ⊆ Agt.

It is known [1] that M, q |=IR φ iff M, q |=µ T RIR(φ), for each
φ ∈ ATL and q ∈ Q. Indeed, fixed-point computations are the usual
way of verifying ATL. As shown in [3], this approach does not extend
to ATLir and af-AMCi. The fact that these logics are of incomparable
expressivity means that model checking of af-AMCi cannot be used,
in general, for model checking of ATLir . Let us illustrate this on the
example of reachability.

3.1 Reachability in ATLir versus af-AMCi

It is not obvious how to define the reachability for af-AMCi. A straight-
forward imitation of the fixed-point definition from ATL immediately
proves problematic. Namely, if we introduce a new derived modality 3?

in such a way that 〈〈A〉〉3?φ ≡ µX(φ∨ 〈A〉X), then it is easy to observe
that M, q |=µ

ir φ implies M, q |=µ
ir 〈〈A〉〉3?φ. This, however, is inconsis-

tent with af-AMCi, where M, q |=ir φ =⇒ M, q |=ir 〈〈A〉〉3φ does not
hold. On the other hand, we haveM, q |=ir EAφ =⇒ M, q |=ir 〈〈A〉〉3φ,
i.e., if the coalition A knows φ, then φ is bound to happen, as it is ac-
tually occuring. This suggests the following definition:

〈A〉3•φ ≡ µX(EAφ ∨ 〈A〉X), (1)

for all A ⊆ Agt, φ ∈ af-AMCi. However, as we show in the following
proposition, this still does not capture the concept of ir–reachability.

Proposition 1. Let A ⊆ Agt, q ∈ Q, φ ∈ af-AMCi, and V ∈ Vals. The
following conditions hold:
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1. M, q |=µ
ir 〈〈∅〉〉3•φ iff M, q |=ir 〈〈∅〉〉3φ,

2. if |A| = 1, then M, q |=µ
ir 〈〈A〉〉3•φ implies M, q |=ir 〈〈A〉〉3φ, but

the reverse implication is not true,

3. if |A| > 1, then M, q |=µ
ir 〈〈A〉〉3•φ does not imply M, q |=ir

〈〈A〉〉3φ, and the reverse implication is not true too.

Proof. The first case follows from the fact that for the empty coalition
of agents the ir–reachability is equivalent to the IR–reachability, which
in turn has a fixed-point characterisation in AMC [1]. For the empty
coalition, this characterisation carries over to af-AMCi.

Let us move to the second case. We define the sequence {Fj}j∈N
of formulae of af-AMCi such that F0 = Kaφ and Fj+1 = F0 ∨ 〈a〉Fj ,
for all j ≥ 0. From Kleene fixed-point theorem we have [[〈〈a〉〉3φ]]Mµir =⋃∞
j=0 [[Fj ]]

M
µir, where {[[Fj ]]Mµir}j∈N is a non-decreasing monotone sequence

of subsets of Q. Now, we prove that for each j ∈ N there exists a
partial strategy sja such that dom(sja) = [[Fj ]]

M
µir, ∀q ∈ dom(sja) ∀λ ∈

out irM(q, sja) ∃k ≤ j λk |=µ
ir φ, and sja ⊆ sj+1

a . The proof is by induction
on j. We constructively build sj+1

a from sja for each j ∈ N. The base case
is trivial. For the inductive step, firstly observe that for each j ∈ N if q ∈
[[Fj ]]

M
µir, then [q]∼a ⊆ [[Fj ]]

M
µir. Due to the fact that ∼a is an equivalence

relation, for each q ∈ Fj+1 either [q]∼a ⊆ Fj or [q]∼a ⊆ Fj+1 \ Fj . In
the first case we put sj+1

a (q) = sja(q). In the second case, we know
that there exists a strategy sqa such that ∀λ ∈ out irM(q, sqa) λ1 ∈ [[Fj ]]

M
µir.

Moreover, due to the fact that ∼a is an equivalence relation, the set
of such strategies is shared by the whole class [q]∼a . We therefore put
sj+1
a (q′) = sqa(q′) for all q′ ∈ [q]∼a . Finally, we can define the partial

strategy sa =
⋃
j∈N s

j
a. For each q ∈ Q such that M, q |=µ

ir 〈〈A〉〉3•φ,
either M, q |=µ

ir φ, or φ will be reached along each path consistent
with any extension of sa to a full strategy. The fact that the reverse
implication is not true is shown in [3] (Proposition 4).

We now move to the last case and consider the ICGS M1 presented
in Fig. 1. We assume that d1(s) = {a, b} and d2(s) = {x, y}, for s ∈
{t, v, r, u}. In the remaining states the protols allow only one transition.
For clarity, we omit from the figure the transitions leaving the states
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3 Underapproximating ATLir

qstart

t v r u

p

sink

1

1 1
1 1

1

1 2 1

(a, x)

(a, x)
(b, y)

(a, x)
(b, y) (b, y)

Figure 1: ICGS M1: a counterexample for reachability

t, v, r, and u, leading to sink . By hand-calculations one can observe
that M, q |=µ

ir 〈〈1, 2〉〉3p and M, q 6|=ir 〈〈1, 2〉〉3p. This example can be
easily extended with a larger number of (idle) agents. This concludes
the proof of the case and the proposition.

3.2 Altering the Next-Step Operator

From the practical point of view, the results obtained so far are rather
discouraging. A fixed-point based logic such as af-AMCi may enable
more efficient procedures of model checking than ATLir . However, as
shown in Proposition 1, the verification of the formulae of ATLir by
their natural translation to af-AMCi does not work in general.

In what follows, we propose a new version of the next-step operator,
denoted by 〈·〉F . As we show, this construct retains the basic proper-
ties of the next-step operator of ATLir and the fixed-point reachability
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Figure 2: ICGS M2: the next-step operator limitations

defined using 〈·〉F implies ir–reachability.
Let A ⊆ Agt. Following [4] we define the relation of the common

knowledge as ∼AC= (∼AE)?, where ? is the operator of transitive closure.
For our convenience, and with a slight notational abuse (∼AE is not an
equivalence relation), here and in the remainder of this paper we denote
[q]∼A

E
= {q′ ∈ Q | q′ ∼AE q}.

Persistent Next-Step Operator Before we present the goal con-
struct, we introduce an intermediate next-step operator 〈·〉P whose aim
is to alleviate the following limitation of af-AMCi. Consider the single-
agent ICGS presented in Fig. 2. Observe that the sole possible strategy,
in which the agent 1 selects the action a, enforces eventually reaching p,
i.e., M2, q |=ir 〈〈1〉〉3p. On the other hand, M2, q 6|=µ

ir 〈〈1〉〉3p. The rea-
son for the latter is that the next-step operator ATLir requires reaching
p in the succeeding state from all the states indistinguishable from q,
whereas p is reached from t, q, v in zero, one, and two steps, respectively.

Let sA ∈ ΣA be a strategy for A ⊆ Agt and Q ⊆ Q. We build from
M = 〈Agt,Q,Π, π,Acts, d, o, {∼a | a ∈ Agt}〉 the restricted model
MQ

sA = 〈Agt,Q,Π′, π′,Acts, d′, o′, {∼a | a ∈ Agt}〉 as follows. Firstly,
in each state q ∈ Q and agent a ∈ A we limit the set of actions allowed to
a to the one selected by sa, i.e., da(q)′ = {sa(q)}. Secondly, we introduce
a new, fresh proposition Q̄ with labeling π′(Q̄) = Q. All the remaining
components of MQ

sA are inherited from M.
Let q ∈ Q, V ∈ Vals, and φ ∈ af-AMCi. We define the auxilliary
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3 Underapproximating ATLir

operator AF by giving its denotation function as follows:

[[AF sA
Q φ]]Mµir,V = {q ∈ Q | MQ

sA
, q |= Q̄ ∧ 〈〈∅〉〉Q̄Uφ}. (2)

Intuitively, M, q |=µ
ir AF sA

Q φ iff q ∈ Q and all the paths starting in q
eventually reach φ without leaving Q (except for the last step, possibly).

Now we are ready to define the new operator, called the persistent
next-step operator 〈·〉P . Its denotation function is as follows:

[[〈A〉Pφ]]Mµir,V = {q ∈ Q | ∃sA ∈ ΣA s.t. [[AF sA
[q]∼A

E

φ]]Mµir,V = [q]∼A
E
}, (3)

where A ⊆ Agt. Observe thatM, q |=µ
ir 〈A〉Pφ iff there exists a strategy

sA ∈ ΣA such that every outcome λ ∈ out irM(q, sA) eventually reaches φ
without leaving [q]∼A

E
. We therefore have the following proposition.

Proposition 2. Let A ⊆ Agt, q ∈ Q, and φ ∈ af-AMCi. If M, q |=µ
ir

〈A〉Pφ, then M, q |=ir 〈〈A〉〉3φ.

However, the operator of the persistent next-step is only an interme-
diate step of our construction. Let us define the new persistent reacha-
bility operator 3P in the usual way, by putting 〈A〉3Pφ ≡ µX(EAφ ∨
〈A〉PX). One can observe thatM, q |=µ

ir 〈A〉φ impliesM, q |=µ
ir 〈A〉Pφ,

hence we have the following proposition.

Proposition 3. Let A ⊆ Agt, q ∈ Q, and φ ∈ af-AMCi; M, q |=µ
ir

〈〈A〉〉3Pφ does not imply M, q |=ir 〈〈A〉〉3φ.

Indeed, in the ICGS presented in Fig. 1 we have M, q |=µ
ir 〈〈A〉〉3P p

andM, q 6|=ir 〈〈A〉〉3p. Recall that the method of unification of strategies
for the case of single agent, presented in the proof of Proposition 1,
was based on the fact that the relation of everybody knows ∼A is an
equivalence relation if |A| = 1. We thus alter the definition given in
Eq. 3 by putting the relation of common knowledge in place of everybody
knows to obtain the next type of the next-step operator.
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Persistent Imperfect Next-Step Operator We define the persis-
tent imperfect next-step operator 〈·〉F by giving its denotation function:

[[〈A〉Fφ]]Mµir,V = {q ∈ Q | ∃sA ∈ ΣA s.t. [[AF sA
[q]∼A

C

φ]]Mµir,V = [q]∼A
C
}, (4)

where φ ∈ af-AMCi, A ⊆ Agt, and V ∈ Vals. Intuitively, M, q |=µ
ir

〈A〉Fφ if the coalition A has the common knowledge that φ is happening
either now or in the next step. As previously, let us define a new, derived
modality 3F as follows:

〈A〉3Fφ ≡ µX(EAφ ∨ 〈A〉FX), (5)

for all A ⊆ Agt, φ ∈ af-AMCi. As shown in the following theorem, this
type of reachability implies ir–reachability.

Theorem 1. Let A ⊆ Agt, q ∈ Q, φ ∈ af-AMCi, and V ∈ Vals. If
M, q |=µ

ir 〈〈A〉〉3Fφ, then M, q |=ir 〈〈A〉〉3φ.

Proof. The proof is similar to the proof of Proposition 1. As previously,
let us define the sequence {Fj}j∈N of formulae of af-AMCi such that
F0 = EAφ and Fj+1 = F0 ∨ 〈A〉FFj , for all j ≥ 0. In our proof we
use the derived sequence {Hj}j∈N of formulae of af-AMCi such that
Hj = 〈A〉FFj for all j ∈ N. From Kleene fixed-point theorem we have
[[〈〈A〉〉3Fφ]]Mµir = [[F0]]

M
µir ∪

⋃∞
j=0 [[Hj ]]

M
µir. Observe that due to the fact

that ∼AC is an equivalence relation, for each q ∈ Q and j ∈ N, if [q]∼A
C
∩

[[Hj ]]
M
µir 6= ∅, then [q]∼A

C
⊆ [[Hj ]]

M
µir.

We prove that for each j ∈ N there exists a partial strategy sjA
such that dom(sjA) = [[Hj ]]

M
µir, ∀q ∈ dom(sjA) ∀λ ∈ out irM(q, sjA) ∃k ∈

N λk |=µ
ir EAφ, and sjA ⊆ sj+1

A . The proof is by induction on j. In
the base case of H0 = 〈A〉FEAφ observe that if q ∈ [[H0]]

M
µir then there

exists a partial strategy s0,qA with dom(s0,qA ) = [q]∼A
C

such that every λ ∈
out irM(q, s0,qA ) stays in [q]∼A

C
until it reaches a state where EAφ holds. As

∼AC is an equivalence relation, we can now define s0A =
⋃

[q]∼A
C
∈Q/∼A

C
s0,qA ,

where any choice of the representative from a given abstraction class
is correct. For the inductive step, we divide the construction of sj+1

A
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4 Conclusion

in two cases. Firstly, if q ∈ [[Hj ]]
M
µir, then we put sj+1

A (q) = sjA(q).

Secondly, let q ∈ [[Hj+1]]
M
µir \ [[Hj ]]

M
µir. In this case there exists a par-

tial strategy sj+1,q
A with dom(sj+1,q

A ) = [q]∼A
C

such that each outcome

λ ∈ out irM(q, sj+1,q
A ) stays in [q]∼A

C
until it reaches a state q′ in which

either EAφ holds or q′ ∈ [[Hj ]]
M
µir. In the latter case from the inductive

assumption we know that following sj+1
A (i.e., sjA, by the previous case)

always leads to reaching EAφ without leaving [[Hj ]]
M
µir. We therefore put

sj+1
A =

⋃
[q]∼A

C
∈Q/∼A

C
sj+1,q
A , where, again, any choice of the representa-

tive from an abstraction class is correct.
Finally, we can build a partial strategy sA =

⋃
j∈N s

j
A. Any extension

s′A of this strategy is such that for each q ∈ Q, if M, q |=µ
ir 〈〈A〉〉3Fφ

then a state in which EAφ holds is eventually reached along each outcome
λ ∈ out irM(q, s′A). This concludes the proof.

4 Conclusion

In this paper we have investigated the correspondence between model
checking of af-AMCi and ATLir on the example of reachability. We
have identified some of the reasons for the fact that these logics are
of uncomparable expressivity. These observations form the basis for a
novel method for underapproximating ATLir by means of fixed-point
calculations. To this end, we introduce a special version of the next-step
operator, called Persistent Imperfect Next-Step Operator 〈·〉F and show
how it can be used to define a new version of reachability that carries
to ATLir .

In the future work we plan to analyse the properties of the operator
〈·〉F in more detail. In particular, the reasons for which the relation of
common knowledge seems to appear in a natural way need to be inves-
tigated. Moreover, we conjecture that this operator can be employed
to building a new strategic logic, based on the syntax of ATL, that
underapproximates ATLir .
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