PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of middle ear disorder in round-window stimulation using a finite element human ear model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to study the effect of middle ear disorder on round window (RW) stimulation, so as to provide references for the optimal design of RW stimulation type middle ear implants (MEIs). Methods: A human ear finite-element model was built by reverse engineering technique based on micro-computed tomography scanning images of human temporal bone, and was validated by three sets of comparisons with experimental data. Then, based on this model, typical disorders in otosclerosis and otitis media were simulated. Finally, their influences on the RW stimulation were analyzed by comparison of the displacements of the basilar membrane. Results: For the otosclerosis, the stapedial abnormal bone growth severely deteriorated the equivalent sound pressure of the RW stimulation at higher frequencies, while the hardening of ligaments and tendons prominently decreased the RW stimulation at lower frequencies. Besides, among the hardening of the studied tissues, the influence of the stapedial annular ligament’s hardening was much more significant. For the otitis media, the round window membrane (RWM)’s thickening mainly decreased the RW stimulation’s performance at lower frequencies. When the elastic modulus’ reduction of the RWM was considered at the same time especially for the acute otitis media, it would raise the lower-frequency performance of the RW stimulation. Conclusions: The influence of the middle ear disorder on the RW stimulation is considerable and variable, it should be considered during the design of the RW stimulation type MEIs.
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, P. R. China
autor
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, P. R. China
autor
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, P. R. China
autor
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, P. R. China
autor
  • State Key Laboratory of Mechanical System and Vibrations, Shanghai Jiao Tong University, Shanghai, P. R. China
autor
  • School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, P. R. China
Bibliografia
  • [1] AIBARA R., WELSH J.T., PURIA S., GOODE R.L., Human middle-ear sound transfer function and cochlear input impedance, Hear Res., 2001, 152(1–2), 100–109.
  • [2] ARNOLD A., CCANDREIA S., Factors improving the vibration transfer of the floating mass transducer at the round window, Otol. Neurotol., 2010, 31(1), 122–128.
  • [3] BARROSO E., MA Z., TAVARES J.M.R., GENTIL F., Computational algorithms for the segmentation of the human ear, VipIMAGE 2011 – III ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, Real Marina Hotel & Spa, Olhão, Algarve, Portugal, 12–14 October 2011, 377–382.
  • [4] BEKESY G.V., Experiments in hearing, McGraw-Hill, New York 1960.
  • [5] BELTRAME A.M., MARTINI A., PROSSER S., GIARBINI N., STREITBERGER C., Coupling the vibrant soundbridge to cochlea round window: Auditory results in patients with mixed hearing loss, Otol. Neurotol., 2009, 30(2), 194–201.
  • [6] FERREIRA A., GENTIL F., TAVARES J.M.R., Segmentation algorithms for ear image data towards biomechanical studies, Comput. Method Biomec., 2014, 17(8), 888–904.
  • [7] FROST H., Observations on the fundamental nature of otosclerosis, [in:] H. Schuknecht (ed.)Otosclerosis, Little, Brown and Company, Boston, 1962.
  • [8] GAN R.Z., SUN Q., FENG B., WOOD M.W., Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions, Med. Eng. Phys., 2006, 28(5), 395–404.
  • [9] GENTIL F., PARENTE M., MARTINS P., GARBE C., JORGE R.N., FERREIRA A., TAVARES J.M., The influence of the mechanical behaviour of the middle ear ligaments: A finite element analysis, P. I. Mech. Eng. C.-J. Mec., 2011, 225(1), 68–76.
  • [10] GENTIL F., PARENTE M., MARTINS P., GARBE C., PA O.J., FERREIRA A.J., TAVARES J.M.R., JORGE R.N., The influence of muscles activation on the dynamical behaviour of the tympano-ossicular system of the middle ear, Comput. Method. Biomec., 2013, 16(4), 392–402.
  • [11] GREEF D.D., PIRES F., DIRCKX J.J.J., Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics, Hear Res., 2016, 344, 195–206.
  • [12] GUNDERSEN T., SKARSTEIN O., SIKKELAND T., A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the mossbauer effect, Acta OtoLaryngologica, 2009, 86(3–4), 225–232.
  • [13] HUBER A., KOIKE T., WADA H., NANDAPALAN V., FISCH U., Fixation of the anterior mallear ligament: Diagnosis and consequences for hearing results in stapes surgery, Ann. Otol. Rhinol. Laryngol., 2003, 112(4), 348–355.
  • [14] KOKA K., HOLLAND N.J., LUPO J.E., JENKINS H.A., TOLLIN D.J., Electrocochleographic and mechanical assessment of round window stimulation with an active middle ear prosthesis, Hear Res., 2010, 263(1), 128–137.
  • [15] KRINGLEBOTN M., GUNDERSEN T., KROKSTAD A., SKARSTEIN O., Noise-induced hearing losses. Can they be explained by basilar membrane movement?, Acta Otolaryngol. Suppl., 1979, 360 (Suppl. 360), 98–101.
  • [16] LIU H., CHENG J., YANG J., RAO Z., CHENG G., YANG S., HUANG X., WANG M., Concept and evaluation of a new piezoelectric transducer for an implantable middle ear hearing device, Sensors, 2017, 17(11), 2515.
  • [17] LIU H., XU D., YANG J., YANG S., CHENG G., HUANG X., Analysis of the influence of the transducer and its coupling layer on round window stimulation, Acta Bioeng. Biomech., 2017, 19(2), 103–111.
  • [18] MAIER H., SALCHER R., SCHWAB B., LENARZ T., The effect of static force on round window stimulation with the direct acoustic cochlea stimulator, Hear Res., 2013, 301(7), 115–124.
  • [19] MANOUSSAKI D., DIMITRIADIS E.K., CHADWICK R.S., Cochlea's graded curvature effect on low frequency waves, Phys. Rev. Lett., 2006, 96(8), 088701.
  • [20] MILLER M.H., SCHEIN J.D., Selected complex auditory disorders, J. Rehabil. Res. Dev., 2005, 42(4 Suppl. 2), 1–8.
  • [21] NAKAJIMA H.H., RAVICZ M.E., ROSOWSKI J.J., PEAKE W.T., MERCHANT S.N., Experimental and clinical studies of malleus fixation, The Laryngoscope, 2005, 115(1), 147–154.
  • [22] PURIA S., PEAKE W.T., ROSOWSKI J.J., Sound-pressure measurements in the cochlear vestibule of human-cadaver ears, J. Acoust. Soc. Am., 1997, 101(1), 2754–2770.
  • [23] RONG Z., GAN D.N., XIANGMING ZHANG, Dynamic properties of round window membrane in guinea pig otitis media model measured with electromagnetic stimulation, Hear Res., 2013, 301(1), 125–136.
  • [24] SAHNI R.S., PAPARELLA M.M., SCHACHERN P.A., GOYCOOLEA M.V., LE C.T., Thickness of the human round window membrane in different forms of otitis media, Arch. Otolaryngol. Head Neck Surg., 1987, 113(6), 630–634.
  • [25] TIAN J., HUANG X., RAO Z., TA N., XU L., Finite element analysis of the effect of actuator coupling conditions on round window stimulation, J. Mech. Med. Biol., 2015, 15(4), 1550048.
  • [26] WANG X., WANG L., ZHOU J., HU Y., Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea, Comput. Method Biomec., 2014, 17(10), 1096–1107.
  • [27] YAO W., TANG D., CHEN Y., LI B., Study on vibration characteristics and transmission performance of round window membrane under inverse excitation, J. Mech. Med. Biol., 2018, 1850033.
  • [28] ZHANG X., GAN R.Z., A comprehensive model of human ear for analysis of implantable hearing devices, IEEE T. BioMed. Eng., 2011, 58(10), 3024–3027.
  • [29] ZHANG X., GAN R.Z., Dynamic properties of human round window membrane in auditory frequencies running head: Dynamic properties of round window membrane, Med. Eng. Phys., 2013, 35(3), 310–318.
  • [30] ZWISLOCKI J., Analysis of the middle-ear function. Part I: Input impedance, J. Acoust. Soc. Am., 1962, 34(9B), 1514–1523.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cccfa70a-4a15-4d6a-85c0-7215069fb3dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.