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Numerical solution of reinforced concrete beam
using arc-length method
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Abstract. This article discusses numerical solution of a reinforced concrete beam. The modelling
was conducted with the rules of the finite element method (FEM). In order to verify the correctness
of the assumed material’s models: concrete and reinforcing steel, the results obtained with the arc-length
method finite analysis were compared with experimental data. The method had been verified in the beam
spatial model, in which concrete crushing at compressive and concrete stiffening at tensile are dominant
phenomena. The arc-length method is the only one to offer the possibility of obtaining a complete
load-deflection curve with local and global softening.
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1. Introduction

There are a number of methods for modelling reinforced concrete members
for both analytical and numerical approaches. The finite element method
(FEM) is applied to analyse reinforced concrete structures based on the use
of non-linear behaviour of the materials. The FEM simulations can provide
the response of reinforced concrete members. The use of FEM has increased
due to the advancement of knowledge and capabilities of computer software and
hardware. The non-linear material models are integrated in numerous of purpose
of FE codes: MSC NASTRAN, ABAQUS, ADINA or ANSYS. The literature
provides many studies in which there were modelled the reinforced concrete
members. Kachlakev et al. [1] studied the beams externally strengthened with
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reinforced plastic carbon fiber with no stirrups. Wolanski [2] used the ANSYS
program to study the flexural failure of reinforced and prestressed concrete
beams. Smarzewski and Stolarski [3] and Smarzewski [4] studied the flexural
failure of reinforced concrete and high-strength concrete beams by using ANSYS.
Ozcan et al. [5] investigated the steel fiber reinforced concrete beam by using non-
linear material properties till the ultimate failure cracks by ANSYS. Korol and
Tejchman [6] used the ABAQUS program to study the size effect in concrete and
reinforced concrete beams. An elasto-plastic model with non-local softening was
used. The non-linear analysis was applied to investigate the shear failure in tensile
reinforced concrete beams without stirrups by Stowik and Smarzewski [7, 8].
Szcze$niak and Stolarski [9] studied the effort of reinforced concrete beams
using dynamic relaxation.

In this study, the simulation of reinforced concrete beam behaviour was
performed by using the ANSYS program. An analysis of the reinforced concrete
beam, modelled as a concrete member with discreetly distributed steel rebars,
is conducted. The failure modes of reinforced concrete beam under static load, with
the consideration for physical non-linearity and for geometrical non-linearity, are
modelled. A concrete model for elastic-plastic material, with the consideration for
softening in compression and tension, was applied. The finite analyses in the range
of static large displacement were considered. The static equilibrium equation using
arc-length method was solved. Numerical results were compared with experimental
data described by Buckhouse [10].

2. Modelling of concrete and steel reinforcement

The concrete failure surface was presented with a five-parameter William and
Warnke model [11]. On the basis of experimental data [12, 13] and modification
of the dynamic strength criterion [14, 15], stress-strain relation for the concrete
with elastic-plastic hardening and the material softening in the uniaxial
compression was applied. Point no 1, defined as 33% of the ultimate compressive
strength f. is calculated in the linear range. Also for the range of elastic-plastic
concrete hardening linear increase to f. was accepted. In the third range of concrete
softening, stress down to 80% of f. at ultimate strain ¢, was assumed. The strains
&1 = 6%o and ¢, = 12%o were adopted. The stress-strain curve in uniaxial tension is
linear up to the ultimate tensile strength f;. On the basis of paper [16], the equality
of concrete modulus elasticity for compression and concrete modulus elasticity for
tension were considered. After reaching f; there is a brittle fracturing of the material
and strength decreases down to 40%.

Bilinear isotropic model for all types of the steel reinforcement is assumed.
The bilinear isotropic material is based on the Mises failure criteria. This model
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requires the yield strength and hardening modulus to be defined. Linear isotropic
model for the steel plates at support and loading point was assumed.

3. Method of analysis
3.1. Model of reinforced concrete beam
The FEA modelling a concrete beam was performed using ANSYS. In the finite
analysis of reinforced concrete beam the dimensions, reinforcement arrangement,

load scheme and material properties corresponding to C1-beam tested by [10] were
used. The test setup is presented in Fig. 1.
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Fig. 1. Test setup (all dimensions are in mm)

Concrete control C1-beam was performed with flexural and shear reinforcement.
Stirrups were placed to force a flexural failure mechanism. A beam was loaded
with transverse point loads at two points along the beam. Loading was applied
to the beam until failure occurred. The linear variable displacement transformer
(LVDT) was used to measure the deflection at mid-span. The measuring device was
put on the beam after it was set in the test fixture. Deflections were taken relative
to a zero deflection point after the self-weight was introduced.

Stress-strain parameters assumed for the concrete and steel were described
in paper [17]. Due to the symmetry of the element, a one quarter of beam,
sized 2360 mm x 457 mm x 127 mm, was modelled. To obtain correct results,
the rectangular mesh was used. The discrete model of the reinforcement was used.
No mesh of the reinforcement was needed because rebars elements were made
through the concrete mesh nodes. A perfect bond between the concrete and steel
reinforcement was considered. In this study, the steel link elements were connected
between nodes of adjacent concrete solid elements, so these materials shared the same
nodes. The tensile rebars also shared the same nodes as the stirrups. The width and
length in the steel plates at support and loading point consistent with the elements
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and nodes in the concrete elements was set. Figure 2 presents the mesh, boundary
conditions in the symmetry plains, boundary conditions on the support and loading
plate and statistical description of the numerical model.

The link element to model steel rebars was used. This element is a spatial spar
element. It has two nodes with three degrees two nodes with three degrees of freedom
(translations) in each of them. This element is capable of plastic deformation.
The modulus of elasticity and yield stress for the steel reinforcement was used
to follow the material properties used in experimental research. The model of elastic-
-perfectly plastic material with identical properties in tension and compression for
steel reinforcement was assumed. A Poisson’s ratio of 0.3 was used.

The solid element was used for the steel plates at support and loading point
in order to avoid stress concentration problems. The modulus of elasticity equal
to 200 MPa and Poisson’s ratio of 0.3 were used for the plates. The steel plates were
assumed to be linear elastic materials. The support was modelled in such a way
that a roller, allowing the beam to rotate, was created. Nods located in the middle
of the support plate were given constraint in the x and z directions. The force was
applied across the entire centreline of the loading plate.

3.2. Arc-length method

The arc-length method in the structure finite analysis was used by Wempner [18],
Bergan et al. [19], and Riks [20]. Crisfield [21-23], Ramm [24], Forde and Stiemer [25],
Belleni and Chulya [26], and Lam and Morley [27] made further modifications for this
method. More information is provided by Crisfield [28] and Memon and Su [29].

The arc-length method is shown in Fig. 3. In this algorithm, Newton-Raphson
equation is dependent on the load parameter A:

LK {au = AP = {F" § 1)

where: [K;T] — tangent stiffness matrix;
i — subscript representing the equilibrium iteration;
{F/"} — vector of restoring load corresponding to the element’s internal load;
{F"} — vector of applied load.

In this procedure, the total load parameter A is determined from the equilibrium
equations in the procedure of finite element from the range -1< A < 1. In the incre-
mental substep, the equation has the following form:

(&7 J{au} = 8{F }= (4 + M ){F* p-{F" }. 2)

in which: Al — incremental load parameter.
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Fig. 3. Arc-length method [22]

On the basis of Eq. (2), the vector of incremental displacement {Au;} consists
of two components described as:

{Aui}=M{Aui[}+{AuiH}, (3)

where: {Au;} — vector of displacement increment caused by a unit load parameter;
{Au} — vector of displacement increment in the Newton-Raphson
method.
Displacement vectors are defined as:

{auf }=[&7 T {F}. @)
{au Y=[KI T [Go+82){F Y- {E ). (5)

The incremental load parameter A is defined from the arc-length equation:

P=m2+ 2 A, Y {Au, Y, 6)
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where: 8 — scaling factor;
Au, — the sum of all displacement increments Aw; in the current
iteration step.

There are many ways of calculating approximate AA. Work [23] presents a general
procedure of computing the parameter AA ensuring orthogonality:

A= r —{Aun}T {Auiﬂ}
B, +{ Au, ¥ {au!}

(7)

where: ; — required residual for explicit iteration on a sphere.
The final vectors are updated according to:

{uiJr1 }= {“o }+{Aun }+{Aui }, (8)
Apsy = Ao + D, + M, 9)

n — current substep number.

Iterations stop at the moment of obtaining the convergence of the numerical
solution.

In this study, the convergence criteria were based on force and displacement.
The convergence tolerance limits were initially selected by the ANSYS program.
Convergence of solutions for the model beam was difficult to achieve due to the non-
linear behaviour of reinforced concrete. Thus, the convergence limits were increased
to maximum 5 times the default tolerance limits (0.5% for force checking and 5%
for displacement checking) in order to obtain convergence of the solution.

4. Results and discussion
4.1. Cracking propagation analysis

Both cracking and crushing failure modes are accounted for concrete.
In the concrete element, cracking occurs when the principal tensile stress in any
directions lies outside the failure surface. After cracking, the elastic modulus
of the concrete is set to zero in the direction parallel to the principal tensile stress
direction. Crushing occurs when all principal stresses are compressive and lie outside
the failure surface. Subsequently, the element effectively disappears. The ANSYS
program records a crack pattern at each applied load step. Cracking is shown with
a circle outline in the plane of the crack. Crushing is shown with an octahedron
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outline. The first, second, and third crack at an integration point are shown with red
circle outline, green circle outline, and blue circle outline, respectively.

The smeared cracks’ patterns obtained at different levels of the load are presented
in Fig. 4.
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Fig. 4. Evolution of crack patterns

Initially, flexural cracks propagate in the constant moment region in the beam
mid-span, up to the load of 22.6 kN. Further cracks grow horizontally towards
the support. Significant cracking occurs at 57.8 KN. The cracks from crushing concrete
under the loading plate and diagonal tension cracks at the mid-shear-span are
occurred. Yielding of steel reinforcement at 62.4 kN is appeared. Further development
of the flexural cracks and diagonal cracks is observed. At the last converged load
steps, numerous compressive cracks occur at the top part of the beam, and many
flexural cracks are observed at mid-span as well.

4.2. Strain and stress analysis

In order to control the concrete strain data under loading, the point placed
on the top face of the beam was selected. The tensile strain results for steel
reinforcement were recorded in longitudinal rebar at the beam mid-span. Figure 5a
shows the load-strain plot for the concrete from the finite element analysis at the mid-
span of Cl-beam, whereas Fig. 5b presents the load-strain plot for the tensile
steel rebar at mid-span. In both curves, one can see an insignificant force descent
at the first cracking load.
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Fig. 5. Load-strain plots for (a) compressive concrete; (b) tensile steel rebar

Other images concern non-elastic behaviour of the concrete under static loading.
Figure 6 shows the normal stresses for the model C1-beam. At theload of F = 22.6 kN,
the first plasticity stress in the tension part of the concrete beam in the constant
moment region can be observed. In this tension area, the concrete beam is initially
plasticised at the first cracking load. In the remaining part of the beam, the concrete
works within the elastic range for tension and compression.

Further loading causes that in the flexural concrete the sudden cracking occurs.
This results in a decrease in force down to F = 21.2 kN. Nearby cracking zone,
an increase in the plasticity stress towards the support can be observed. At the load
of F = 62.3 kN one can see the connection of the cracking zone with the plasticity
area. Further development of concrete plasticity area for compression in the region
of constant moment is also observable. At F = 68.9 kN, this caused the transition
in the top face of the beam to the material softening. Exceeding the load capacity
of a beam is caused by the local crushing of concrete at the mid-span, similar
to the experimental beam [10]. With increase in load, the approximation of neutral
axis to the top face of the beam can be seen. In Ia-phase, the neutral axis is located
below the central axis of the beam. In subsequent phases, it adopts increasingly high
positions. At the failure load, neutral axis is located close to the top face of the beam.
This is the region where cracks run through the significant part of the cross-section.
For large cross-sectional areas of steel reinforcement, neutral axis does not rise so
high and frequently does not even reach the central axis of the beam. The neutral
axis moves away from the top face of the beam.

These stresses are similar to the distribution of stresses obtained in Newton-
Raphson method using adaptive descent. The tensile normal stresses o, and
the compressive tangent stresses 0, determine the diagonal direction of the principal
stresses. They cause the formation of diagonal tensile cracks in the shear-span.
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On the other hand, the tensile tangent stresses 0, and o, contribute to the development

of concrete flexural cracks in the constant moment region.
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Fig. 6. Normal stress 0, under loading (unit in MPa)

4.3. Load-deflection curves analysis

Curves of load-defection at the lower edge of the beam (F - u,) are non-
monotonous due to the assumed concrete model with softening in the process
of deformation. Obtaining a complete computational path with local decrease
in stiffness (at the first cracking load) and global softening (at the crushing load) is
possible by using the arc-length method. It was indicated that the patterns of crack
in the tension region are not compensated by elastic steel reinforcement properties
and by concrete plasticity at the top edge of the beam [30]. These instabilities can be
seen on the load-deflection curve as sudden decrease in load. Therefore, it is justified
to use the methods which allow us to reflect the effects of concrete softening. In both,
the region of elastic stresses and after cracking, the model beam is characterised
by the higher stiffness than the experimental beam. The increase in stiffness is
connected with the changes of modulus of elasticity for cracking concrete and with
the assumption of perfect bond between steel rebars and concrete. The ultimate
deflection at beam mid-span of 92.72 mm from the model is approximately equal
to the experimental ultimate deflection of 92.7 mm. The load-deflection plot from
the FEA agrees excellent with the experimental data for the C1-beam (see Fig. 7).
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Fig. 7. Load-deflection plot for C1-beam

Figure 8 shows that the load-deflection curves for the Cl-beam form
the experimental data and the finite element analyses are in reasonably good
agreement.
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Fig. 8. Load-deflection curves for C1-beam obtained using different algorithms
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The failure load for the finite element model beam is F = 72.6 kN, which is higher
than the ultimate load obtained with Newton-Raphson procedure using adaptive
descent by 5% [17]. All the incremental-iterative algorithms: Newton-Raphson
procedure (N-R), quasi-Newton procedure using adaptive descent (N-R ad), and
arc-length procedure (A-L) have given acceptable numerical results.

Summary

The paper evaluates the effectiveness of FEM procedures in non-linear analysis
of reinforced concrete beam modelled as a spatial structural member. The solution
of static equations in the FEM was made on the basis of arc-length method.
The method had been verified in the spatial models of reinforced concrete members
with concrete crushing and stiffening.

On the basis of reinforced concrete beam under static load, a comparison
of theoretical and experimental results was made. The comparison proved
the correctness of the assumptions concerning the concrete and steel models, and
numerical algorithms to solve non-linear equilibrium equations. The arc-length
method gives the possibility of obtaining a complete solution path of load-deflection
with local and global softening. Moreover, the algorithm is characterised by high
efficiency. Load step increments and properly set arc-length parameters guarantee
the shortening of time numerical computing, still with very precise data. The obtained
results and conclusions can be the basis for further research on modelling the failure
modes in the reinforced concrete members.

Received December 20, 2012. Revised October 26, 2015.

REFERENCES

[1] KacHLAKEV D.I, MiLLER T., YIM S., CHANSAWAT K., Potsiuk T., Finite Element Modeling
of Reinforced Concrete Structures Strengthened with FRP Laminates, California Polytechnic State
University, May, 2001.

[2] Wovransk1 B.S., Flexural Behavior of Reinforced and Prestressed Concrete Beams Using Finite
Element Analysis, Master’s Thesis, Milwaukee, Wisconsin, May 2004.

[3] SmaRZEWSKI P, STOLARSKI A., Modelowanie zachowania niesprezystej belki zelbetowej, Biul.
WAT, 56, 2, 2007, 147-166.

[4] SMARzEWSKI P, Analiza numeryczna niesprezystych belek zelbetowych z betonu wysokiej wytrzy-
maltosci o niskim stopniu zbrojenia, Budownictwo i Architektura, 4, 2009, 5-30.

[5] OzcanD.M., BAYRAKTAR A., SAHIN A., HAKTANIR T., TURKER T., Experimental and finite element
analysis on the steel fiber-reinforced concrete (SFRC) beams ultimate behavior, Construction and
Building Materials, 23, 2009, 1064-1077.

[6] KoroL E., TEJCHMAN J., Experimental and theoretical studies on size effects in concrete and reinfor-
ced concrete beams, CMM-2011 — Computer Methods in Mechanics, Warsaw, Poland, 9-12 May
2011.



Numerical solution of reinforced concrete beam using arc-length method 45

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

SLOWIK M., SMARZEWSKI P, Study of the scale effect on diagonal crack propagation in concrete
beams, Computational Materials Science, 64, 2012, 216-220.

SLOWIK M., SMARZEWSKI P., Numerical modeling of diagonal cracks in concrete beams, Archives
of Civil Engineering, 60, 3, 2014, 307-322.

SZCZE$NIAK A., STOLARSKI A., Analiza wytezenia belek zelbetowych metodg relaksacji dynamicznej,
Inzynieria i Budownictwo, 5, 2012, 267-269.

BuckHoUSE E.R., External Flexural Reinforcement of Existing Reinforced Concrete Beams Using
Bolted Steel Channels, Master’s Thesis, Marquette University, Milwaukee, Wisconsin, 1997.
WirLam K.J., WARNKE E.P, Constitutive Model for the Triaxial Behavior of Concrete. International
Association for Bridge and Structural Engineering, vol. 19, ISMES, Bergamo, Italy, 1975, 1-30.
PECCE M., FABBROCINO G., Plastic Rotation Capacity of Beams in Normal and High-Performance
Concrete, ACI Structural Journal, March-April 1999, 290-296.

KamiNska M.E., Doswiadczalne badania zelbetowych elementow pretowych z betonu wysokiej
wytrzymatosci, KILiW, PAN, L6dz, 1999.

STOLARSKI A., Model dynamicznego odksztalcenia betonu, Archiwum Inzynierii Ladowej, t. 37,
z.3-4, 1991, 405-447.

STOLARSKI A., Dynamic Strength Criterion for Concrete, Journal of Engineering Mechanics,
American Society of Civil Engineering, vol. 130, no 12, December 2004, 1428-1435.

LyNpoN ED., BALENDRAN R.V,, Some observations on elastic properties of plain concrete, Cement
and Concrete Research, 16, no 3, 1986, 314-324.

SMARZEWSKI P., Numerical solution of reinforced concrete beam using Newton-Raphson method
with adaptive descent, Biuletyn WAT, 64, 4, 2015, 207-221.

WEMPNER G.A., Discrete approximation related to nonlinear theories of solids, International Journal
of Solids and Structures, 7, 1971, 1581-1599.

BERGAN P.G., HORRIGMOE G., KRAKELAND B., SOREIDE T.H., Solution techniques for nonlinear
finite element problems, International Journal for Numerical Methods in Engineering, 12, 1978,
1677-1696.

Rixs E., An incremental approach to the solution of snapping and buckling problems, Interna-
tional Journal of Solids and Structures, 15, 1979, 529-551.

CRISFIELD M.A., A fast incremental/iterative solution procedure that handles snap-through, Com-
puter and Structures, 13, 1981, 55-62.

CRISFIELD M. A., Variable Step-Length for Nonlinear Structural Analysis, Report 1049, Transport
and Road Research Lab., Crowthorne, England, 1982.

CRISFIELD M.A., An arc-length method including line searches and accelerations, International
Journal for Numerical Methods in Engineering, 19, 1983, 1269-1289.

Ramm E., Strategies for Tracing the Nonlinear Response near Limit Points, Nonlinear Finite Element
Analysis in Structural Mechanics, Springer, New York, 1981.

ForDE B.W.R,, STIEMER S.E, Improved arc length orthogonality methods for nonlinear finite
element analysis, Computers and Structures, 27, 1987, 625-630.

BELLENI P.X., CHULYA A., An improved automatic incremental algorithm for the efficient solution
of nonlinear finite element equations, Computers and Structures, 26, 1987, 99-110.

Lam W.E, MorLeY C.T., Arc-length method for passing limit points in structural calculation,
Journal of Structural Engineering, 118(1), 1992, 169-185.

CRISFIELD M.A., Non-linear Finite Element Analysis of Solids and Structures, John Wiley & Sons,
Inc., 2000.



46 P. Smarzewski

[29] MEMON B.A,, SUX., Arc-length technique for nonlinear finite element analysis, Journal of Zhejiang
University Science, 5, 2004, 618-628.

[30] RasHID M.A., MANSUR M.A., Reinforced High-Strength Concrete Beams in Flexure, ACI Structural
Journal, vol. 102, 3, May-June 2005, 462-471.

P. SMARZEWSKI

Rozwiazanie numeryczne belki zZelbetowej metoda dlugosci tuku

Streszczenie. W artykule przedstawiono rozwigzanie numeryczne belki zelbetowej. Modelowanie
przeprowadzono z wykorzystaniem zasad metody elementdw skoniczonych (MES). W celu zweryfiko-
wania poprawnoéci zatozonych modeli materiatéw: betonu i stali zbrojeniowej, poréwnano otrzymane
wyniki analizy numerycznej metoda dtugosci tuku z wynikami do$wiadczalnymi. Metode zweryfi-
kowano na przestrzennym modelu belki, w ktérym decydujacym zjawiskiem jest miazdzenie betonu
przy $ciskaniu i zesztywnienie przy rozciaganiu. Metoda dlugo$ci tuku jako jedyna oferuje mozliwoé¢
uzyskania kompletnej $ciezki obcigzenie-ugiecie z lokalnym i globalnym oslabieniem.

Stowa kluczowe: mechanika konstrukcji betonowych, metoda elementéw skoriczonych, belka zelbe-
towa, algorytm dlugosci tuku
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