PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nieograniczone możliwości spiekania SPS

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Unlimited possibilities of sintering by SPS
Języki publikacji
PL
Abstrakty
PL
Dzisiejszy świat techniki i medycyny poszukuje nowych materiałów o unikalnych właściwościach. Zwykle jedyną technologią wytwarzania takich zaawansowanych materiałów jest spiekanie. W ostatnich latach nastąpił szybki rozwój nowoczesnych metod spiekania, wykorzystujących do nagrzewania impulsy prądu elektrycznego. Jedną z technik spiekania aktywowanych prądem elektrycznym jest metoda SPS (spark plasma sintering).
EN
Today’s world of technology and medicine looking for new materials with unique properties. Sintering is usually the only technology of production of such advanced materials. In recent years there has been rapid development of modern sintering methods which use pulses of electric current in heating process. One of these techniques is SPS (Spark Plasma Sintering) method.
Czasopismo
Rocznik
Strony
1558--1560
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Centrum Produkcji i R&D, GeniCore Sp. z o.o.
autor
  • Centrum Produkcji i R&D, GeniCore Sp. z o.o.
autor
  • Centrum Produkcji i R&D, GeniCore Sp. z o.o.
Bibliografia
  • 1. Orrù R., Licheri R., Locci A.M., Cincotti A.C.G. “Consolidation/synthesis of materials by electric current activated/ assisted sintering”. Materials Science & Engineering: R. Vol. 63, Iss. 4 (2009): pp.127–287.
  • 2. Grasso S., Sakka Y., Maizza G. “Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008”. Science and Technology of Advanced Materials. 10:5, 053001, DOI: 10.1088/1468 6996/10/5/053001.
  • 3. Olevsky E.A., Bradbury W.L., Haines C.D., Darold G.M., Kapoor D. “Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability”, Journal of the American Ceramic Society. Vol. 95, Iss. 8 (2012): pp. 2406–2413.
  • 4. Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method”. Journal of Materials Science. 41 (2006): pp. 763–777.
  • 5. Guillon O., Gonzalez-Julian J., Dargatz B. “Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials and Technology Developments”. Advanced Engineering Materials. 2014, DOI: 10.1002/adem.201300409.
  • 6. „Jak wejść na światowe rynki?”. Przegląd Techniczny. 26 (2015).
  • 7. www.rp.pl/Orzel-innowacji-/312149827-Nowe-technologie-z-Konstancina.html#ap-2 (dostęp: 08.06.2016).
  • 8. Ohser-Wiedemann R., Martin U., Müller A., Schreiber G. “Spark Plasma Sintering of Mo-W powders prepared by mechanical alloying”. Journal of Alloys and Compounds. Vol. 560 25 (2013): pp. 27–32.
  • 9. Park Hyun-Kuk, Ryu Jung-Han, Youn Hee-Jun, Oh Ik-Hyun, Yang Jun-Mo. “Fabrication and property evaluation of Mo compacts for sputtering target application by spark plasma sintering process”. Materials Transactions. Vol. 53, Iss. 6 (2012): pp. 1056–1061.
  • 10. Shkodich N.F., Rogachev A.S., Vadchenko S.G., Moskovskikh D.O.,Sachkova N.V., Rouvimov S., Mukasyan A.S. “Bulk Cu-Cr nanocomposites by high-energy ball milling and spark plasma sintering”. Journal of Alloys and Compounds. Vol. 617 (2014): pp. 39–46.
  • 11. Balbo A., Sciti D. “Spark plasma sintering and hot pressing of ZrB2-MoSi 2 ultra-high-temperature ceramics”. Materials Science and Engineering: A. Vol. 475, Iss. 1 (2008): pp. 108–112.
  • 12. Licheri R. et al. “Spark plasma sintering of UHTC powders obtained by self-propagating high-temperature synthesis”. Journal of Materials Science. Vol. 43, Iss. 19 (2008): pp. 6406–6413.
  • 13. Hussein M.A., Suryanarayana C., Al-Aqeeli N. “Fabrication of nanograined Ti–Nb–Zr biomaterials using spark plasma sintering”. Materials& Design. 87 (2015): pp. 693–700.
  • 14. Daoush Walid Mohamed Rashad Mohamed et al. “Microstructural and mechanical characterization of Ti-12Mo-6Zr biomaterials fabricated by spark plasma sintering”. Metallurgical and Materials Transactions A. 46.3 (2015): pp. 1385–1393.
  • 15. Kalmodia Sushma et al. “Microstructure, mechanical properties and in vitro biocompatibility of spark plasma sintered hydroxyapatite-aluminum oxide-carbon nanotube composite”. Materials Science and Engineering: C. 30.8 (2010): pp. 1162–1169.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cccdcbd5-2951-46fa-8402-40065359b8b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.