Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gas-atomized Ni-based powder tends to agglomerate, directly impacting the spreadability of printing process. In this paper, three technical methods are applied to restore the powder flowability, including regulating particle size distribution, lubricant modification, and heating treatment. As particle size increases, powder regains flowability. However, the average particle size of GH3536 powders with flowability is greater than 46 μm, which cannot meet the demand for 3D printing (15-53 μm). The flowability of GH3536 powder can be restored by adding zinc stearate lubricant. After lubricant modification, the printed samples display a 16% increase in elongation, along with a little improvement in tensile strength. This paper also investigates the flow properties change of raw powder heated at 100°C, 200°C, 300°C, and 400°C. When the temperature rises beyond 400°C, powder flowability fully returns, along with oxygen content increasing. Overall, the lubricant modification technique is appropriate in actual manufacturing, but the flow rate value of powders is typically high, exceeding 70 s/50 g. Increasing particle size and heat treatment can improve powder flowability and the flow rate of powder is less than 20 s/50 g.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1005--1014
Opis fizyczny
Bibliogr. 43 poz., fot., rys., tab.
Twórcy
autor
- China Machinery Institute of Advanced Materials (Zhengzhou) Co., Ltd , Zhengzhou 450001, China
autor
- China Machinery Institute of Advanced Materials (Zhengzhou) Co., Ltd , Zhengzhou 450001, China
autor
- China Machinery Institute of Advanced Materials (Zhengzhou) Co., Ltd , Zhengzhou 450001, China
autor
- University of Science and Technology Beijing, Institute for Advanced Materials and Technology, Beijing 100083, China
- University of Science and Technology Beijing, Shunde Innovation School, Guangzhou 528399, China
Bibliografia
- [1] S. Irukuvarghula, H. Hassanin, C. Cayron, M. Aristizabal, M. Attallah, M. Preuss, Effect of Powder Characteristics and Oxygen Content on Modifications to the Microstructural Topology during Hot Isostatic Pressing of An Austenitic Steel. Acta Mater. 172 (15), 6-17(2019). DOI: https://doi.org/10.1016/j.actamat.2019.03.038
- [2] D. Gu, X. Shi, R. Poprawe, D.L. Bourell, R. Setchi, J. Zhu, Material-Structure-Performance Integrated Laser-Metal Additive Manufacturing. Science 372 eabg1487 (2021). DOI: https://doi.org/10.1126/science.abg1487
- [3] D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 57, 133-164 (2012). DOI: https://doi.org/10.1179/1743280411Y.0000000014
- [4] M. Vaezi, H. Seitz, S. Yang, A Review on 3D Micro-Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 67, 1721-1754(2013). DOI: https://doi.org/10.1007/s00170-012-4605-2
- [5] J.A. Muñiz-Lerma, A. Nommeots-Nomm, K.E. Waters, M. Brochu, A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg. Materials 11 (12) 2386 (2018). DOI: https://doi.org/10.3390/ma11122386
- [6] A.B. Spierings, M. Voegtlin, T. Bauer, K. Wegener, Powder Flowability Characterisation Methodology for Powder-Bed-Based Metal Additive Manufacturing. Prog. Addit. Manuf. 1, 9-20 (2016). DOI: https://doi.org/10.1007/s40964-015-0001-4
- [7] M. Krantz, H. Zhang, J. Zhu, Characterization of Powder Flow: Static and Dynamic Testing. Powder Technol. 194 (13), 239-245 (2009). DOI: https://doi.org/10.1016/j.powtec.2009.05.001
- [8] A. Yu, J. Hall, Packing of Fine Powders Subjected to Tapping. Powder Technol. 78 (3), 247-256 (1994). DOI: https://doi.org/10.1016/0032-5910(93)02790-H
- [9] E.O. Olakanmi, Effect of Mixing Time on the Bed Density, and Microstructure of Selective Laser Sintered (SLS) Aluminium Powders. Mater. Res. 15 (2) 167-176 (2012). DOI: https://doi.org/10.1590/s1516-14392012005000031
- [10] P.W. Cleary, M.L. Sawley, DEM Modelling of Industrial Granular Flows: 3D Case Studies and the Effect of Particle Shape on Hopper Discharge. Appl. Math. Model. 26(2), 89-111(2002). DOI: https://doi.org/10.1016/s0307-904X(01)00050-6
- [11] R.M. German, Prediction of Sintered Density for Bimodal Powder Mixtures. Metall. Mater. Trans. A. 23, 1455-1465 (1992). DOI: https://doi.org/10.1007/BF02647329
- [12] L. Cordova, M. Campos, T. Tinga, Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization. JOM-US. 71, 1062-1072 (2019). DOI: https://doi.org/10.1007/s11837-018-3305-2
- [13] Y. Liu, X. Guo, H. Lu, X. Gong, An Investigation of the Effect of Particle Size on the Flow Behavior of Pulverized Coal. Procedia Eng. 102, 698-713 (2015). DOI: https://doi.org/10.1016/j.proeng.2015.01.170
- [14] I. Tomasetta, D. Barletta, M. Poletto, The Effect of Temperature on Flow Properties of Fine Powders. Chem. Eng. Trans. 24, 655-660(2011). DOI: https://doi.org/10.3303/CET1124110
- [15] C. Schadauer, G.R. Martetschläger, A.L. Ilie, A. Angerbauer, C. Lanzerstorfer, Casting Powders: Influence of the Humidity on the Flowability. Ironmak. Steelmak. 47, 460-463 (2020). DOI: https://doi.org/10.1080/03019233.2020.1725730
- [16] L. Marchetti, P. Mellin, C. Neil Hulme, Negative Impact of Humidity on the Flowability of Steel Powders. Part. Sci. Technol. 40, 722-736 (2022). DOI: https://doi.org/10.1080/02726351.2021.1995091
- [17] J. Hu, C. Liang, C.-Y. Wu, X. Wang, Q. Zhou, Effect of Electrostatic Interactions on Particle Dispersion in a Rotating Spherical Container. Powder Technol. 398, 117063 (2022). DOI: https://doi.org/10.1016/j.powtec.2021.117063
- [18] Y. Ma, T.M. Evans, N. Philips, N. Cunningham, Numerical Simulation of the Effect of Fine Fraction on the Flowability of Powders in Additive Manufacturing. Powder Technol. 360, 608-621 (2020). DOI: https://doi.org/10.1016/j.powtec.2019.10.041
- [19] I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, Single Track Formation in Selective Laser Melting of Metal Powders. J. Mater. Process. Technol. 210 (19), 1624-1631 (2010). DOI: https://doi.org/10.1016/j.jmatprotec.2010.05.010
- [20] N. Zeoli, S. Gu, Numerical Modelling of Droplet Break-up for Gas Atomisation. Comput. Mater. Sci. 38 (2), 282-292 (2006). DOI: https://doi.org/10.1016/j.commatsci.2006.02.012
- [21] J. Xie, Y. Zhao, J. Dunkley, Effects of Processing Conditions on Powder Particle Size and Morphology in Centrifugal Atomisation of Tin. Powder Metall. 47, 168-172 (2004). DOI: https://doi.org/10.1179/003258904225015482
- [22] D. Schwenck, N. Ellendt, J. Fischer-Bühner, P. Hofmann, V. Uhlenwinkel, A Novel Convergent-Divergent Annular Nozzle Design for Close-Coupled Atomisation. Powder Metall. 60, 198-207 (2017). DOI: https://doi.org/10.1080/00325899.2017.1291098
- [23] A. Allimant, M. Planche, Y. Bailly, L. Dembinski, C. Coddet, Progress in Gas Atomization of Liquid Metals by Means of a De Laval Nozzle. Powder Technol. 190, 79-83 (2009). DOI: https://doi.org/10.1016/j.powtec.2008.04.071
- [24] W.S. Prashanth, S.L. Thotarath, S. Sarkar, T.N.C. Anand, S. Bakshi, Experimental Investigation on the Effect of Melt Delivery Tube Position on Liquid Metal Atomization. Adv. Powder Technol. 32 (3), 693-701 (2021). DOI: https://doi.org/10.1016/j.apt.2021.01.017
- [25] J. Wang, M. Xia, J. Wu, C. Ge, Ladle Nozzle Clogging in Vacuum Induction Melting Gas Atomization: Influence of the Melt Viscosity. Metall. and Mater. Trans. B. 53, 2386-2397 (2022). DOI: https://doi.org/10.1007/s11663-022-02537-y
- [26] L.J. Jallo, M. Schoenitz, E.L. Dreizin, R.N. Dave, C.E. Johnson, The Effect of Surface Modification of Aluminum Powder on Its Flowability, Combustion and Reactivity. Powder Technol. 204 (1), 63-70 (2010). DOI: https://doi.org/10.1016/j.powtec.2010.07.017
- [27] M. Ramlakhan, C.Y. Wu, S. Watano, R.N. Dave, R. Pfeffer, Dry Particle Coating using Magnetically Assisted Impaction Coating: Modification of Surface Properties and Optimization of System and Operating Parameters. Powder Technol. 112, 137-148 (2000). DOI: https://doi.org/10.1016/S0032-5910(99)00314-9
- [28] S. Kumar, S.R. Kumar, S.C. Vettivel, Tribological Behavior of Sintered Electrolytic Iron‐zinc Stearate Added Compacts. Materialwissenschaft und Werkstofftechnik 54 (5), 627-636 (2023). DOI: https://doi.org/10.1002/mawe.202200251
- [29] Z. Liu, H. Li, X. Liu, Effect of Warm Compaction Lubricant on the Properties of Fe-based Powder Metallurgy Materials. Mater. Res. Express 6 (4), 046534 (2019). DOI: https://doi.org/10.1088/2053-1591/aafbfa
- [30] L.C. Zhang, W.Y. Xu, Z. Li, L. Zheng, Y.F. Liu, G.Q. Zhang, Characterization of Particle Shape of Nickel-Based Superalloy Powders using Image Processing Techniques. Powder Technol. 395, 787-801 (2022). DOI: https://doi.org/10.1016/j.powtec.2021.10.013
- [31] H. Rumpf, Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an Kontaktpunkten. Chem. Ing. Tech. 42, 538-540 (1970). DOI: https://doi.org/10.1002/cite.330420806
- [32] K. Yuasa, M. Tagami, M. Yonehara, T.T. Ikeshoji, K. Takeshita, H. Aoki, H. Kyogoku, Influences of Powder Characteristics and Recoating Conditions on Surface Morphology of Powder Bed in Metal Additive Manufacturing. Int. J. Adv. Manuf. Technol. 115, 3919-3932 (2021). DOI: https://doi.org/10.1007/s00170-021-07359-x
- [33] G. Marchese, G. Basile, E. Bassini, Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion. Materials 11 (1), 106 (2018). DOI: https://doi.org/10.3390/ma11010106
- [34] H.C. Hamaker, The London-van Der Waals Attraction between Spherical Particles. Physica 4 (10), 1058-1072 (1937). DOI: https://doi.org/10.1016/S0031-8914(37)80203-7
- [35] H. Shi, R. Mohanty, S. Chakravarty, R. Cabiscol, M. Morgeneyer, H. Zetzener, J.Y. Ooi, A. Kwade, S. Luding, V. Magnanimo, Effect of Particle Size and Cohesion on Powder Yielding and Flow. Kona Powder Part. J. 35, 226-250 (2018). DOI: https://doi.org/10.14356/kona.2018014
- [36] C. Machio, R. Machaka, H. Chikwanda, Consolidation of Titanium Hydride Powders during the Production of Titanium PM Parts: The Effect of Die Wall Lubricants. Mater. Des. 90, 757-766 (2016). DOI: https://doi.org/10.1016/j.matdes.2015.11.030
- [37] L.Y. Leung, C. Mao, I. Srivastava, P. Du, C.Y. Yang, Flow Function of Pharmaceutical Powders is Predominantly Governed by Cohesion, not by Friction Coefficients. J. Pharm. Sci. 106, 1865-1873 (2017). DOI: https://doi.org/10.1016/j.xphs.2017.04.012
- [38] W. Qi, B. Huang, M. Wang, Z. Li, Z. Yu, Generalized Bond-Energy Model for Cohesive Energy of Small Metallic Particles. Phys. Lett. A. 370, 494-498 (2007). DOI: https://doi.org/10.1016/j.physleta.2007.06.062
- [39] Q. Li, B. Zhang, Y. Wen, et al., A comprehensive study of tantalum powder preparation for additive manufacturing. Applied Surface Science 593, 153357 (2022). DOI: https://doi.org/10.1016/j.apsusc.2022.153357
- [40] C. Liu, K. Zhu, W. Ding, Y. Liu, G. Chen, X. Qu, Additive Manufacturing of WMoTaTi Refractory High-Entropy Alloy by Employing Fluidised Powders, Powder Metall. 65 (5), 413-425 (2022). DOI: https://doi.org/10.1080/00325899.2022.2031718
- [41] G. Gai, Y. Yang, L. Jin, X. Zou, Y. Wu, Particle Shape Modification and Related Property Improvements. Powder Technol. 183 (1), 115-121(2008). DOI: https://doi.org/10.1016/j.powtec.2007.11.026
- [42] T. Marcu, M. Todea, I. Gligor, P. Berce, C. Popa, Effect of Surface Conditioning on the Flowability of Ti6Al7Nb Powder for Selective Laser Melting Applications. Appl. Surf. Sci. 258 (7), 3276-3282 (2012). DOI: https://doi.org/10.1016/j.apsusc.2011.11.081
- [43] W. Ding, Z. Wang, G. Chen, W. Cai, C. Zhang, Q. Tao, X. Qu, M. Qin, Oxidation Behavior of Low-Cost CP-Ti Powders for Additive Manufacturing via Fluidization. Corros. Sci. 178, 109080 (2021). DOI: https://doi.org/10.1016/j.corsci.2020.109080
Uwagi
This study was funded by the Key Project of the Defense Industrial Technology Development Program (GRANT NO. JCKY2022×××B207).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccc7160e-e128-4389-851f-e2e154baf1dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.