Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The influence of yttria and alumina sintering additives on silicon nitride laser ablation
Języki publikacji
Abstrakty
Praca dotyczy badań nad laserową obróbką ubytkową w trybie pracy ciągłej materiału polikrystalicznego z azotku krzemu z dodatkiem 5% i 10% wagowych tlenków itru i tlenku. Materiały otrzymano metodą prasowania na gorąco w 1750 °C. Scharakteryzowano je pod kątem zagęszczenia, składu fazowego, mikrostruktury oraz właściwości cieplnych. Spieki wykazywały różny skład, stopień zagęszczenia, a co za tym idzie różną dyfuzyjność cieplną i przewodność. Polikryształy poddano obróbce laserowej przy użyciu lasera światłowodowego domieszkowanego iterbem o długości 1064 nm. Do obróbki wykorzystano 40-mikronową plankę wiązki, prędkość procesu 1 mm/s i moc 40 W. Badano szerokość i głębokość cięcia laserowego oraz strefę wpływu ciepła. Na podstawie charakterystyki materiału przeanalizowano wpływ dodatków tlenkowych poprawiających spiekanie na obróbkę laserową azotku krzemu.
The work concerns research on continuous work laser subtractive processing of silicon nitride polycrystalline material with 5% and 10% by weight of yttria and alumina additions. The materials were obtained by hot-pressing method at 1750 °C. They were characterized in terms of densification, phase composition, microstructure, and thermal properties. The sinters showed various composition, degree of densification and resulting it different thermal diffusivity and conductivity. The polycrystals were laser treated using a 1064 nm ytterbium doped fibre laser. The 40 microns beam spot, 1 mm/s process speed and a power of 40 W were used for processing purposes. The width and depth of the laser cutting as well as heat influenced zone were investigated. The influence of oxides sintering additives on the laser processing of silicon nitride was analysed basing on the material characterization.
Wydawca
Czasopismo
Rocznik
Tom
Strony
71--81
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology in Kraków, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology in Kraków, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology in Kraków, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology in Kraków, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology in Kraków, Faculty of Materials Science and Ceramics, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Xing, H., Liu, B., Sun, J., Zou, B.: Mechanical properties of Si3N4 ceramics from an in-situ synthesized α-Si3N4/β-Si3N4 composite powder, Ceram. Int., 43, (2017), 2150-2154.
- [2] Xu, W., Yin, Z., Yuan, J., Wang, Z., Fang, Y.: Effects of sintering additives on mechanical properties and microstructure of Si3N4 ceramics by microwave sintering, Mater. Sci. Eng. A, 684, (2017), 127-134.
- [3] Kašiarová, M., Tatarko, P., Burik, P., Dusza, J., Šajgalík, P.: Thermal shock resistance of Si3N4 and Si3N4–SiC ceramics with rare-earth oxide sintering additives, J. Eur. Ceram. Soc., 34, (2014), 3301-3308.
- [4] Tatarko, P., Kašiarová, M., Dusza, J., Šajgalík, P.: Influence of rare-earth oxide additives on the oxidation resistance of Si3N4–SiC nanocomposites, J. Eur. Ceram. Soc., 33, (2013), 2259-2268.
- [5] Hyuga, H., Jones, M. I., Hirao, K., Yamauchi, Y.: Influence of Rare‐Earth Additives on Wear Properties of Hot‐Pressed Silicon Nitride Ceramics under Dry Sliding Conditions, J. Eur. Ceram. Soc., 87, (2004), 1683-1686.
- [6] Tatarko, P., Lojanová, S., Dusza, J., Šajgalík, P.: Influence of various rare-earth oxide additives on microstructure and mechanical properties of silicon nitride-based nanocomposites, Mater. Sci. Eng.: A, 527, (2010), 4771-4778.
- [7] Lukianova, O. A., Ivanov, O. N.: The effect of Al2O3-MgO additives on the microstructure of spark plasma sintered silicon nitride, Ceram. Int., 44, (2018), 390-393.
- [8] Guo, S., Hirosaki, N., Yamamoto, Y., Nishimura, T., Kagawa, Y.: Hot-pressed Si3N4 ceramics with Lu2O3 additives: Grain-boundary phase and strength, Mater. Sci. Eng.: A, 408, (2005), 9-18.
- [9] Kumar, A., Gokhale, A., Ghosh, S., Aravindan, S.: Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics, Mater. Sci. Eng.: A, (2019), in press, https://doi.org/10.1016/j.msea.2019.02.020
- [10] Petrovskij, Ja. V.: Silicon nitride ceramics, Warszawa: ITME, (1993).
- [11] Abdel-Rahman, A. A.: An Abrasive Waterjet Model for Cutting Ceramics, in Mathematical Models for Engineering Science, (Eds. V. Mladenov, K. Psarris, N. Mastorakis, A. caballero, G. Vachtsevanos), Proc. of MMS ’10, WSEAS Press, (2010), 68-72.
- [12] Wang, L., Huang, C. Z., Wang, J., Zhu, H. T., Yao, P.: Laser-Assisted Waterjet Microgrooving of Silicon Nitride Ceramics with near Damage-Free, Mater. Sci. Forum, 861, (2016), 69-74,.
- [13] Zhao, S., Xiao, W., Rahaman, M. N., O'Brien, D., Seitz‐Sampson, J. W., Bal, B. S.: Robocasting of silicon nitride with controllable shape and architecture for biomedical applications, Appl. Ceram. Techn., 14, (2017), 117-127.
- [14] Zhang, J., Long, Y., Liao, S., Lin, H. T., Wang, Ch.: Effect of laser scanning speed on geometrical features of Nd:YAG laser machined holes in thin silicon nitride substrate, Ceram. Int., 43, (2017), 2938-2942.
- [15] Azarhoushang, B., Soltani, B., Daneshi, A.: Study of the effects of laser micro structuring on grinding of silicon nitride ceramics, CIRP Annals – Manufact. Technol., 67, (2018), 329-332.
- [16] Bonse, J., Mann, G., Krüger, J., Marcinkowski, M., Eberstein, M.: Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics, Thin Solid Films, 542, (2013), 420-425.
- [17] Golla, B. R., Koa, J. W., Kim, J. M., Kim, H. D.: Effect of particle size and oxygen content of Si on processing, microstructure and thermal conductivity of sintered reaction bonded Si3N4, J. Alloys Compd., 595, (2014), 60-66.
- [18] Han, L., Li, F., Huang, L., Zhang, H., Pei, Y., Dong, L., Zhang, J., Zhang, S.: Preparation of Si3N4 porous ceramics via foam-gel casting and microwave-nitridation method, Ceram. Int., 44, (2018), 17675-17680.
- [19] Liang, H., Zeng, Y., Zuo, K., Xia, Y., Yao, D., Yin, J.: Mechanical properties and thermal conductivity of Si3N4 ceramics with YF3 and MgO as sintering additives, Ceram. Int., 42, (2016), 15679-15686.
- [20] Watari, K., Hirao, K., Brito, M. E., Toriyama, M., Ishizaki, K.: Factors to Enhance Thermal Conductivity of Si3N4 Ceramics (Review), AZo J. Mater. Online, 2, (2006).
- [21] Zhou, Y., Hyuga, H., Kusano, D., Yoshizawa, Y., Ohji, T., Hirao, K.: Development of high-thermal-conductivity silicon nitride ceramics, J. Asian Ceram. Socs., 3, (2015), 221-229.
- [22] Kim, J.-M., Ko, S.-I., Kim, H.-N., Ko, J.-W., Lee, J.-W., Kim, H.-D., Park, Y.-J.: Effects of microstructure and intergranular glassy phases on thermal conductivity of silicon nitride, Ceram. Int., 43, (2017), 5441-5449.
- [23] Yokota, H., Yamada, S., Ibukiyama, M.: Effect of large β-Si3N4 particles on the thermal conductivity of β- Si3N4 ceramics, Eur. Ceram. Soc., 23, (2003), 1175-1182.
- [24] Wang, L., Huang, C., Wang, J., Zhu, H., Liang, X.: An experimental investigation on laser assisted waterjet micro-milling of silicon nitride ceramics, Ceram. Int., 44, (2018), 5636-5645.
- [25] Tangwarodomnukun, V., Wang, J., Huang, CZ., Zhu H. T.: An investigation of hybrid laser–water jet ablation of silicon substrates, Int. J. Mach. Tools Manuf., 56, (2012), 39-49.
- [26] Guerrini, G., Lutey, A. H. A., Melkote, S. N., Fortunato, A.: High throughput hybrid laser assisted machining of sintered reaction bonded silicon nitride, J. Mater. Procs. Techn., 252, (2018), 628-635.
- [27] Woo, W.-S., Lee, Ch.-M.: A study on the edge chipping according to spindle speed and inclination angle of workpiece in laser-assisted milling of silicon nitride, Opt. Laser Techn., 99, (2018), 351-362.
- [28] Zhou, Y., Hyuga, H., Kusano, D., Yoshizawa, Y., Ohji, T., Hirao, K.: Development of high-thermal-conductivity silicon nitride ceramics, J. Asian Ceram. Socs., 3, (2015), 221-229.
Uwagi
PL
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccbf78e1-6b20-41eb-b325-ff83ff4b65b5