PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Impact of residual doping on surface current of InGaAs/InP photodiode passivated with regrown InP

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The viability of epitaxial regrowth of non-intentionally doped InP to passivate lateral mesa surfaces of InGaAs photodiodes lattice-matched to InP is investigated, evaluating whether the residual doping of the regrown layer can be responsible for un unexpected increase of the surface current. The effect of residual doping is evaluated via numerical calculations of dark current, considering the range of doping concentrations expected for non-intentionally doped InP. The calculations show that the increase in dark current due to the residual doping of the regrown InP layer is not enough to justify the observed increase in surface current. On the other hand, the technique is still valid as a passivation method if the photodetector pixel is isolated by etching only the top contact layer.
Rocznik
Strony
art. no. e144562
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Institute for Advanced Studies, IEAV, 12228-001, São Paulo, Brazil
  • Institute for Advanced Studies, IEAV, 12228-001, São Paulo, Brazil
  • LabSem, CETUC, Pontifícia Universidade Católica, PUC-Rio, R. Marquês de São Vicente 124, Gávea, 22451-900 Rio de Janeiro, Brazil
  • LabSem, CETUC, Pontifícia Universidade Católica, PUC-Rio, R. Marquês de São Vicente 124, Gávea, 22451-900 Rio de Janeiro, Brazil
  • Institute for Advanced Studies, IEAV, 12228-001, São Paulo, Brazil
  • Physics Institute, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos 149, 21941-909 Rio de Janeiro, Brazil
  • LabSem, CETUC, Pontifícia Universidade Católica, PUC-Rio, R. Marquês de São Vicente 124, Gávea, 22451-900 Rio de Janeiro, Brazil
  • Universidade de São Paulo, USP-São Carlos, 13566-560 São Carlos, SP, Brazil
  • Ohio State University, 281 W Lane Ave., Columbus, OH 43210, USA
  • Ohio State University, 281 W Lane Ave., Columbus, OH 43210, USA
Bibliografia
  • [1] Jones, H. G. et al. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36, 978 (2009). https://doi.org/10.1071/FP09123
  • [2] Chan, V. W. S. Free-space optical communications. J. Lightwave Technol. 24, 4750-4762 (2006). https://opg.optica.org/jlt/abstract.cfm?URI=jlt-24-12-4750
  • [3] Green, R. O. et al. Imaging spectroscopy and the airborne visible/ infrared imaging spectrometer (AVIRIS). Remote Sens. Environ. 65, 227-248 (1998). https://doi.org/10.1016/S0034-4257(98)00064-9
  • [4] Susa, N., Yamauchi, Y. & Kanbe, H. Punch-through type InGaAs photodetector fabricated by vapor-phase epitaxy. IEEE J. Quantum Electron. 16, 542-545 (1980). https://doi.org/10.1109/JQE.1980.1070525
  • [5] Pearsall, T. P. & Papuchon, M. The Ga 0.47 In 0.53 As homojunction photodiode – A new avalanche photodetector in the near infrared between 1.0 and 1.6 μm. Appl. Phys. Lett. 33, 640-642 (1978). https://doi.org/10.1063/1.90447
  • [6] Park, S. et al. Monolithic two-color short-wavelength InGaAs infrared photodetectors using InAsP metamorphic buffers. Appl. Surf. Sci. 581, 152421 (2022). https://doi.org/10.1016/j.apsusc.2022.152421
  • [7] Li, X. et al. High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure. Sci. Rep. 12, 7681 (2022). https://doi.org/10.1038/s41598-022-11946-7
  • [8] Huntington, A. S. Types of Avalanche Photodiode. in InGaAs Avalanche Photodiodes for Ranging and Lidar 1-92 (Elsevier, 2020). https://doi.org/10.1016/B978-0-08-102725-7.00001-5
  • [9] Ettenberg, M. H. et al. Room temperature 640×512 pixel nearinfrared InGaAs focal plane array. Proc. SPIE 4028, 201-207 (2000). https://doi.org/10.1117/12.391733
  • [10] Dolas, M. H., Atesal, O., Caliskan, M. D., Bek, A. & Ozbay, E. Low dark current diffusion limited planar type InGaAs photodetectors. Proc. SPIE 11129, 111290D (2019). https://doi.org/10.1117/12.2528666
  • [11] Ji, X. et al. Improvement of surface leakage current of 2.6 μm InGaAs photodetectors by using inductive coupled plasma chemical vapor deposition technology. Jpn. J. Appl. Phys. 54, 04DG09 (2015). https://doi.org/10.7567/JJAP.54.04DG09
  • [12] Zhou, Y. et al. Impact of SiN x passivation on the surface properties of InGaAs photo-detectors. J. Appl. Phys. 118, 034507 (2015). https://doi.org/10.1063/1.4926736
  • [13] Braga, O. M. et al. Surface passivation of InGaAs/InP p-i-n photodiodes using epitaxial regrowth of InP. IEEE Sensors J. 20, 9234-9244 (2020). https://doi.org/10.1109/JSEN.2020.2987006
  • [14] Bishop, G. et al. nBn detectors based on InAs∕GaSb type-II strain layer superlattice. J. Vac. Sci. Technol. B 26, 1145 (2008). https://doi.org/10.1116/1.2830627
  • [15] Braga, O. M. et al. Investigation of InGaAs/InP photodiode surface passivation using epitaxial regrowth of InP via photoluminescence and photocurrent. Mater. Sci. Semicond. Process. 154, 107200 (2023). https://doi.10.1016/j.mssp.2022.107200
  • [16] Chow, R. & Chai, Y. G. Electrical and optical properties of InP grown by molecular beam epitaxy using cracked phosphine. Appl. Phys. Lett. 42, 383-385 (1983). https://doi.org/10.1063/1.93947
  • [17] Glade, M., Hergeth, J., Grützmacher, D., Masseli, K. & Balk, P. Diffusion of Zn acceptors during MOVPE of InP. J. Cryst. Growth 108, 449-454 (1991). https://doi.org/10.1016/0022-0248(91)90221-P
  • [18] SILVACO International. ATLAS User’s manual sees (2018). http://ridl.cfd.rit.edu/products/manuals/Silvaco/atlas_users.pdf
  • [19] Meiners, L. G. Electrical properties of SiO 2 and Si 3 N 4 dielectric layers on InP. J. Vac. Sci. Technol. 19, 373-379 (1981). https://doi.org/10.1116/1.571066
  • [20] Levinshtein, M., Rumyantsev, S. & Shur, M. Handbook Series on Semiconductor Parameters: Volume 2: Ternary and Quaternary IIIV Compounds 2. (WORLD SCIENTIFIC, 1996).
  • [21] Forrest, S. R. & Kim, O. K. Deep levels in In0.53Ga0.47 As/InP heterostructures. J. Appl. Phys. 53, 5738-5745 (1982). https://doi.org/10.1063/1.331462
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccbe1631-49e5-4446-9a09-dcf527b87f18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.