PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stabilization/Solidification of Tailing on Traditional Gold Mining in Kulon Progo Using Fly Ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Traditional gold mining activity is one of the sources of mercury contamination. Total mercury concentration in tailing ponds in Kulon Progo ranged from 164.49 mg/kg to 383.21 mg/kg, which exceeded the quality standard values set by the government of Indonesia No. 101 of 2014, which is 75 mg/kg. One method that can be applied is stabilization/solidification (S/S). This study aims to determine the optimum composition of the tailing mixture with fly ash in S/S process. The variations of fly ash composition with tailing are 100: 0, 90: 10, 80: 20, 70: 30, 60: 40, 50: 50, 40: 60, 30: 70, 20: 80 and 10: 90. The results of the study found that the optimum composition of fly ash: tailings was 10: 90, with compression test of 74 ton/m2 and TCLP test was 0.0069 mg/L. The obtained compression test results were in accordance with US EPA Standard quality of 35 ton/m2. TCLP test results meet the standard of Indonesian Government Regulation no. 101 of 2014, amounting to 0.05 mg/L.
Słowa kluczowe
Rocznik
Strony
178--184
Opis fizyczny
Bibliogr. 31 poz., tab., rys.
Twórcy
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
autor
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Bibliografia
  • 1. Antemir A., Hills C.D., Careya P.J., Magnieb M.C., Polettini A. 2010. Investigation of 4 years old stablised/solidified and accelerated carbonated contaminated soil. Journal of Hazardous Materials, 181, 543–555.
  • 2. Borowski G., Hycnar J.J. 2016. The effect of granulated fly ashes with phosphogypsum on the hardening of cement mortar. Technical Transactions Civil Engineering, 2, 37–45.
  • 3. Canpolat F. 2011. The role of coal combustion products in sustainable construction metals. The Indian Concrete Journal, 1, 26–38.
  • 4. Chang J.E., Lin T.T., Ko M.S., Liaw D.S. 1999. Stabilization/solidification of sludge’s containing heavy metals by using cement and waste pozzolans. Journal of Environmental Science and Health, 5, 1143–1160.
  • 5. Chindaprasirt P., Jaturapitakkul C., Sinsiri T. 2004. Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cement & Concrete Composites, 27, 425–428.
  • 6. Decree of the Head of Environmental Impact Management Agency no. 03 of 1995 on Technical Requirements for Processing Hazardous Wastes of Hazardous Materials. Environmental impact Control Agency.
  • 7. Fashola M.O., Jeme V.M.N., Babalola O.O. 2016. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.
  • 8. Ganjidoust H., Hassani A., Ashkiki A.B. 2009. Cement based solidification/stabilization of heavy metal contaminated soils with the objective of achieving high compressive strength for the final matrix. Scientia Iranica, 2, 107–115.
  • 9. Government Regulation of the Republic of Indonesia No. 101 Year 2014 on the Management of Hazardous and Toxic Waste.
  • 10. Hagermann S. 2009. Technologies for the stabilization of elemental mercury and mercury-contaminant waste. Final Report Gesellschaft für Anlagenund Reaktorsicherheit (GRS).
  • 11. Jaishankar M., Tseten T., Anbalagan N., Mathew B.B., Beeregowda K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.
  • 12. Khalid S., Shahid M., Niazi N.K., Murtaza B., Bibi I., Dumat C. 2016. Journal of Geochemical Exploration, 182, 247–268.
  • 13. LaGrega M.D., Buckingham P.I., Evans J.C. 1994. Hazardous Waste Management. McGraw-Hill, Inc., Singapore.
  • 14. Longarini N., Crespi P.G., Zucca M., Giordano N., Silvestro G. 2014. The advantages of fly ash use in concrete structures. Journal of the Polish Mineral Engineering Society, 1, 141–145.
  • 15. Lottermoser B.G. Mine Wastes Characterization, Treatment and Environmental Impacts, 3rd ed. London, 2010.
  • 16. Nawaz. 2013. disposal and utilization of fly ash to protect the environment. international journal of innovative research in science, Engineering and Technology, 2, 5259–5266.
  • 17. Ogola J.S., Mitullah W.V., Omulo M.A. 2002. Impact of gold mining on the environment and human health a case study in the Migori Gold Belt Kenya. Environmental Research, 107, 89–97.
  • 18. Ondova M., Stevulova N., Meciarova L. 2013. The potential of higher share of fly ash as cement replacement in the concrete pavement. Procedia Engineering, 65, 45–50.
  • 19. Parsa Y., Nabavi S.M.B., Nabavi S.N., Hosseini M. 2014. Mercury accumulation in food chain of fish, crab and sea bird from Arvand River. J Marine Sci Res Dev, 4, 148.
  • 20. Rachman R.M., Karisma E.D., Trihadiningrum Y. 2017. Stabilization/solidification of mercury contaminated soil of traditional gold mining in Kulon Progo Yogyakarta, Indonesia using a mixture of portland cement and tras soil. ARPN Journal of Engineering and Applied Sciences, 12, 6380–6387.
  • 21. Wuana R., Okieimen F.E. 2011. Heavy metals in contaminated soils: a review of sources. Chemistry, risks and best available strategies for remediation. ISRN Ecology, 402647, pp. 20.
  • 22. Rianto S. 2010. Analysis factors associated with mercury poisoning in traditional gold miners in Jendi Village Kecamatan Selogiri, Wonogiri regency. Master of Health. Thesis Environment Diponogoro University. Semarang.
  • 23. Riogilang H., Masloman H. 2009. Utilization of mining waste for material building construction. Ekoton, 9(1), 69–73.
  • 24. Sanemasa I. 1975. The solubility of elemental mercury vapor in water. Bulletin of the Chemical Society of Japan, 46, 1795–1798.
  • 25. Setiabudi B.T. 2005. Distribution of mercury due to gold mining business in Sangon Region Kulon Progo Regency Di Yogyakarta. Colloquium Field Results.
  • 26. Tang Q., Liu Y., Fan Gu F., Zhou T. 2016. Solidification/stabilization of fly ash from a municipal solid waste incineration facility using portland cement. Advances in Materials Science and Engineering, 1, 1–10.
  • 27. Telmer K., Stapper D.A. 2012. Practical Guide: reducing mercury use in artisanal and small scale gold mining. united nations environment program. Nairobi Kenya: Geneva, Switzerland.
  • 28. US EPA. 2001. Methods for collection. storage and manipulation of sediments for chemical and toxicological analyses technical manual. U.S. Environmental Protection Agency, Washington.
  • 29. US EPA. 1992. Toxicity Characteristic Leaching Procedure. U.S. Environmental Protection Agency, Washington.
  • 30. Weitzman L. 1990. Factor for selecting appropriate solidification/stabilization methods. Journal of Hazardous Materials, 24, 157–168.
  • 31. Yang YC., Min G.B. 2008. Solidification/stabilization of soil contaminated with metal. Review Journal The Institution of Engineers. Malaysia, 69, 3–10.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccbb27f4-3d1d-430c-b7f9-4f2d125589ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.