PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of pH and annealing temperature on the structural and magnetic properties of cerium-substituted yttrium iron garnet powders produced by the sol-gel method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cerium substituted yttrium iron garnet (Ce0.2Y 2.8Fe5O12; Ce-YIG) nanoparticles were produced via the sol-gel method from solutions of Ce-, Y- and Fe-based precursors, a solvent and a chelating agent. The solutions were dried at 200ºC and heat treated at temperatures between 800 ºC and 1400ºC for 3 h in air. The effects of pH and annealing temperature on the structure, phase formation, magnetic properties and crystallite size were investigated. A cubic YIG phase was obtained for the sample annealed at 1400 ºC. The presented results showed that the pH value of the starting solution affects the crystal size and consequently, the saturation magnetization.
Słowa kluczowe
Wydawca
Rocznik
Strony
362--367
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Department of Electrical and Electronics Engineering, Ege University, 35100, İzmir, Turkey
autor
  • Department of Materials Science and Engineering, Izmir K.atip Celebi University, 35620, İzmir, Turkey
autor
  • Department of Metallurgical and Materials Engineering, Dokuz Eylul University, 35160, İzmir, Turkey
  • Department of Nanoscience and Nanoengineering, Dokuz Eylul University, 35160, Buca, Turkey
autor
  • Department of Electrical and Electronics Engineering, Ege University, 35100, İzmir, Turkey
  • Center for Production and Applications of Electronic Materials (EMUM), Dokuz Eylul University, 35160, Buca, Turkey
Bibliografia
  • [1] Geller S., Gilleo M.A., Acta Crystallogr., 10 (1957), 239.
  • [2] Huang B., Ren R., Zhang Z., Zheng S., J. Alloy. Compd., 558 (2013), 56.
  • [3] Priye V., Bishnu P.P., Thyagarajan K., J. Light-wave Technol., 16 (2) (1998), 246.
  • [4] Sekijima T., Fujii T., Wakino K., Okada M., IEEET. Microw. Theory, 47 (12) (1999), 2294.
  • [5] Goldman A., Technological Ferrites, Oxford Publications,1990.
  • [6] Standley K.J., Oxide Magnetic Materials, 2. Edn. Clarendon Press, Oxford, 1972.
  • [7] Yahya N., Hean G.K., Am. J. Applied Sci., 4 (2) (2007), 80.
  • [8] Lee J.W., Oh J.H., Lee J.C., Choi S.C., J. Magn. Magn. Mater., 272 (2004), 2230
  • [9] Guo X.Z., Ravi B.G., Devi P.S., Hanson J.C., Margolies J., Gambino R.J., Parise J.B., Sampath S., J. Magn. Magn. Mater, 295 (2005), 145.
  • [10] Vaqueiro P., Crosnier-Lopez M.P., Lopezquintela M.A., J. Solid State Chem., 126 (1996), 161.
  • [11] Inoue M., Nishikawa T., Nakamura T., Inui T., J. Am. Ceram. Soc., 80 (8) (1997), 2157.
  • [12] Kuroda C.S., Taniyama T., Kitamoto Y., Yamazaki Y., J. Magn. Magn. Mater., 241 (2002), 201.
  • [13] Matsumoto K., Yamamoto S., Yamanobe Y., Ueno A., Yamaguchi K., Fujii T., Jpn. J. Appl. Phys., 30 (1991), 1696.
  • [14] Kim T., Nasu S., Shima M., J. Nanopart. Res., 9 (2007), 737.
  • [15] Gomi M., Furuyama H., Abe M., J. Appl. Phys., 70 (11) (1991), 7065.
  • [16] Niyaifar R.M., Radhakrishna M.C., Hassnpour A., Mozaffari M., Amighian J., Hyp. Interact., 187 (2008), 137.
  • [17] Mao T.C., Chen J.C., J. Magn. Magn. Mater., 302 (1) (2006), 74.
  • [18] Kum J.S., Kim S.J., Shim I.B., Kim C.S., IEEE T. Magn., 39 (5) (2003), 3118.
  • [19] Xu H., Yang H., J. Mater. Sci.-Mater. El., 19 (2008), 589.
  • [20] Garskaite E., Gibson K., Leleckaite A., Glaser J., Niznansky D., Kareiva A., Meyer H.J., Chem. Phys., 323 (2006), 204.
  • [21] Cheng Z., Yang H., Yu L., Xu W., J. Mater. Sci.-Mater. El., 19 (2008), 442.
  • [22] Nguyet D.T.T., Duong N.P., Satoh T., Anh L.N., Hien T.D., J. Alloy. Compd., 541 (2012), 18.
  • [23] Rashad M.M., Hessien M.M., El-Midany A., Ibrahim I.A., J. Magn. Magn. Mater., 321 (2009), 3752.
  • [24] Wei Z., Cuijing G., Rongjin J., Caixiang F., Yanwei Z., Mater. Chem. Phys., 125 (2011), 646.
  • [25] Vaqueiro P., Lopez-Quintela M.A., Rivas J., Greneche J.M., J. Magn. Magn. Mater., 169 (1997), 56.
  • [26] Cho Y.S., Burdick V.L., Amarakoon V.R.W., J. Am. Ceram. Soc., 80 (6) (1997), 1605.
  • [27] Ozturk Y., Erol M., Celik E., Mermer O., Kahraman G., Avgin I., Mater. Tehnol., 47 (1) (2013), 59.
  • [28] Rehspringer J.L., Bursik J., Niznansky D., Klarikova A., J. Magn. Magn. Mater., 211 (2000), 291.
  • [29] Vajargah S.H., Hosseini H.R.M., Nemati Z.A., Mater. Sci. Eng. B-Adv., 129 (2006), 211.
  • [30] Xu H., Yang H., Xu W., Feng S., J. Mater. Process. Tech., 197 (2008), 296.
  • [31] Kum J.S., Kim S.J., Shim I., Kim C.S., J. Magn. Magn. Mat., 272 (2004), 2227.
  • [32] Vajargah S.H., Hosseini H.R.M., Nemati Z.A., J. Alloy. Compd., 430 (2007), 339.
  • [33] Jesus F.S., Cortes C.A., Valenzuela R., Ammar S., Bolarin-Miro A.M., Ceram. Int., 38 (2012), 5257.
  • [34] Pinkas J., Reichlova V., Serafimidisova A., Moravec Z., Zboril R., Jancik D., Bezdicka P., J. Phys. Chem. C, 114 (32) (2010), 13557.
  • [35] Labuayai S., Siri S., Maensiri S., J. Optoelectron. Adv. M., 10 (2008), 2694.
  • [36] Sekijima T., Kishimoto H., Fujii T., Wakino K., Okada M., Jpn. J. Appl. Phys., 38 (1999), 5874.
  • [37] Hench L.L., West J.K., Principles of Electronic Ceramics, Wiley, New York, 1990.
  • [38] Moulson A.J., Herbert J.M., Electroceramics: Materials, Properties, Applications, Wiley, West Sussex, 2003.
  • [39] Wickersheim K.A., Buchanan R.A., J. Appl. Phys., 38 (1967), 1048.
  • [40] Xu H., Yang H., Mat. Manuf. Process., 23 (1) (2007), 1.
  • [41] Sanchez R.D., Rivas J., Vaqueiro P., Lopezquintela M.A., Caeiro D., J. Magn. Magn. Mat., 247 (2002), 92.
  • [42] Mitra S., Das S., Mandal K., Chaudhuri S., Nanotechnology, 18 (2007), 275608.
  • [43] Praveena K., Sadhana K., Srinath S., Murthy
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccb0f507-a7bc-40d6-95c5-70e554cc594b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.