PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Desensitization by Pre-shocking in Heterogeneous Explosives and its Numerical Modelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Desensitization caused by pre-shocking in heterogeneous explosives is discussed. The aim of this study was to find a simple numerical model that could reproduce the important features of previously reported shock desensitization experiments. After reviewing the previous experimental results and modelling efforts, an extension of the Lee-Tarver reactive flow model is proposed. The proposed desensitization model is based upon the experimentally determined desensitization criteria for explosives. The additional parameters required for this extension can be calibrated by experiment for a typical explosive. The new model has been implemented in the hydrodynamic code LS-DYNA as a user defined equation of state, and is now available to simulate various kinds of situations involving explosives up to the limits and capabilities of LS-DYNA. Desensitization by pre-shocking in double shock experiments, reflected shock and detonation quenching experiments have been studied using the new model, and the results were found to be in qualitative agreement with the experimental results reported in the literature.
Rocznik
Strony
357--379
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
Bibliografia
  • [1] Campbell A.W., Davis W.C., Ramsay J.B., Travis J.R., Shock Initiation of Solid Explosives, Phys. Fluids (1958-1988), 1961, 4(4), 511-521.
  • [2] Campbell A.W., Travis J.R., The Shock Desensitization of PBX-9404 and Composition B-3, Proc., Symp. Detonation, 8th, Albuquerque, New Mexico, July 15-19, 1985.
  • [3] Chick M.C., Hatt D.J., The Initiation of Covered Composition B by a Metal Jet, Propellants Explos. Pyrotech., 1983, 8(4), 121-126.
  • [4] Setchell R.E., Effects of Precursor Waves in Shock Initiation of Granular Explosives, Combust. Flame, 1983, 54(1-3), 171-182.
  • [5] Mulford R.N., Sheffield S.A., Alcon R.R., Preshock Desensitization of PBX Explosives, AIP Conf. Proc., 1994, 309(1), 1405-1408.
  • [6] Mulford R.N., Swift D.C., Reactive Flow Models for the Desensitization of High Explosive, AIP Conf. Proc., 2000, 505(1), 895-898.
  • [7] Tarver C.M., Cook T.M., Urtiew P.A., Tao W.C., Multiple Shock Initiation of LX-17, Proc., Symp. Detonation, 10th, Boston, Massachusetts, July 12-16, 1993.
  • [8] Tarver C.M., Hallquist J.O., Erickson L.M., Modelling Short Pulse Duration Shock Initiation of Solid Explosives, Proc., Symp. Detonation, 8th, Albuquerque, NM, 1985.
  • [9] Bordzilovskii S.A., Karakhanov S.M., Desensitization of Pressed RDX/Paraffin and HMX/Paraffin Compounds by Multiple Shock Waves, Combust., Explos. Shock Waves (Engl. Transl.), 1995, 31(2), 227-235.
  • [10] Bat’kov Y.V., Glushak B.L., Novikov S.A., Desensitization of Pressed Explosive Compositions Based on TNT, RDX, and HMX under Double Shock-wave Loading, Combust., Explos. Shock Waves (Engl. Transl.), 1995, 31(4), 482-485.
  • [11] Vandersall K.S., Garcia F., Tarver C.M., Fried L.E., Shock Desensitization Experiments and Reactive Flow Modeling on Self-sustaining LX -17 Detonation Waves, Proc., Symp. Detonation, 14th, San Francisco, CA, July 13-18, 2014.
  • [12] Gustavsen R.L., Sheffield S.A., Alcon R.R., Winter R.E., Taylor P., Salisbury D.A., Double Shock Initiation of the HMX Based Explosive EDC-37, AIP Conf. Proc., 2002, 620(1), 999-1002.
  • [13] Winter R.E., Sorber S.S., Salisbury D.A., Taylor P., Gustavsen R., Sheffield S., Alcon R., Experimental Study of the Shock Response of an HMX-based Explosive, Shock Waves, 2006, 15(2), 89-101.
  • [14] Mader C.L., LASL PHERMEX Data, Vol. III, University of California Press, Berkeley, California, 1980.
  • [15] Plotard J.P., Belmas R., Nicollet M., Leroy M., Effect of a Preshock on the Initiation of HMX, TATB and HMX/TATB Compositions, Proc., Symp. Detonation, 10th, July 12-16, 1993.
  • [16] Hussain T., Liu Y., Huang F.-L., Duan Z.-P., Modeling and Simulation of Preshock Desensitization in Heterogeneous Explosives using a Mesoscopic Reaction Rate Model, Simulation, 2015, 91(11), 980-988.
  • [17] Duan Z.-P., Wen L.-J., Liu Y., Ou Z.-C., Huang F.-L., Zhang Z.-Y., A Pore Collapse Model for Hot-spot Ignition in Shocked Multi-component Explosives, Int. J. Nonlin. Sc. Num. Sim., 2010, 11 (Supplement), 19-23.
  • [18] Johnson J.N., Tang P.K., Forest C.A., Shock Wave Initiation of Heterogeneous Reactive Solids, J. Appl. Phys., 1985, 57(9), 4323-4334.
  • [19] Wescott B.L., Stewart D.S., Davis W.C., Equation of State and Reaction Rate for Condensed-phase Explosives, J. Appl. Phys., 2005, 98(5), 053514.
  • [20] Desbiens N., Matignon C., Sorin R., Temperature-based Model for Condensedphase Explosive Detonation, J. Phys.: Conf. Ser., 2014, 500(15), 152004.
  • [21] Mader C.L., Numerical Modeling of Explosives and Propellants, 3rd ed., CRC Press, Taylor & Francis, 2008; ISBN 9781420052381.
  • [22] Mader C.L., Modeling Shock Desensitization of Composition B Explosive, J. Energ. Mater., 2014, 32, 80-87.
  • [23] Aminov Y.A., Es’kov N.S., Nikitenko Y.R., Modeling of Double Shock Initiation of TATB-base Explosives, Proc., Symp. Detonation, 12th, San Diego, California, 2002.
  • [24] Handeley C.A., CREST Reactive Flow Model, Proc., Symp. Detonation, 13th, Norfolk, VG, July 23-28, 2006.
  • [25] Whitworth N.J., CREST Modelling of PBX 9502 Corner Turning Experiments at Different Initial Temperatures, J. Phys.: Conf. Ser., 2014, 500(5), 052050.
  • [26] Lambourn B.D., James H.R., The Relation between Reaction Rate and Shock Strength − A Possible Second Order Improvement to the CREST Reactive Burn Model, AIP Conf. Proc., 2012, 1426(1), 591-594.
  • [27] Lee E.L., Tarver C.M., Phenomenological Model of Shock Initiation in Heterogeneous Explosives, Phys. Fluids (1958-1988), 1980, 23(12), 2362-2372.
  • [28] Whitworth N.J., Maw J.R., Modeling Shock Desensitisation of Heterogeneous Explosives, AIP Conf. Proc., 1996, 370(1), 425-428.
  • [29] Souers P.C., Andreski H.G., Cook C.F., Garza R., Pastrone R., Phillips D., Roeske F., Vitello P., Molitoris J.D., LX-17 Corner-turning, Propellants Explos. Pyrotech., 2004, 29(6), 359-367.
  • [30] Souers P.C., Andreski H.G., Batteux J., Bratton B., Cabacungan C., Cook C.F., Fletcher S., Garza R., Grimsley D., Handly J., Hernandez A., McMaster P., Molitoris J.D., Palmer R., Prindiville J., Rodriguez J., Schneberk D., Wong B., Vitello P., Dead Zones in LX-17 and PBX 9502, Propellants Explos. Pyrotech., 2006, 31(2), 89-97.
  • [31] DeOliveira G., Kapila A., Schwendeman D., Bdzil J., Henshaw W., Tarver C., Detonation Diffraction, Dead Zones and the Ignition-and-growth Model, Proc., Symp. Detonation, 13th, Norfolk, Virginia, July 23-28, 2006.
  • [32] Tarver C.M., Corner Turning and Shock Desensitization Experiments Plus Numerical Modeling of Detonation Waves in the Triaminotrinitrobenzene Based Explosive LX-17, J. Physical Chem. A, 2010, 114(8), 2727-2736.
  • [33] Tarver C.M., Modeling Detonation Experiments on Triaminotrinitrobenzene (TATB)-based Explosives LX-17, PBX 9502, and Ultrafine TATB, J. Energ. Mater., 2012, 30(3), 220-251.
  • [34] Wescott B.L., Stewart D.S., Davis W.C., Modeling Detonation Differaction and Dead Zones in PBX-9502, Proc., Symp. Detonation, 13th, Norfolk, Virginia, July 23-28, 2006.
  • [35] Hallquist J.O., LS-DYNA Keyword User’s Manual, v. 971, Livermore, CA, Livermore Software Technology Corporation, 2007; ISBN 0-9778540-2-7.
  • [36] Whitworth N., Mathematical and Numerical Modelling of Shock Initiation in Heterogeneous Solid Explosives, PhD Thesis, Cranfield University, 2008.
  • [37] Belmas R., Plotard J.P., Bianchi C., A Physical Model of Shock to Detonation Transition in Heterogeneous Explosives, Proc., Symp. Detonation, 10th, July 12-16, 1993.
  • [38] Souers P.C., Haselman L.C.J., Detonation Equation of State at LLNL, 1993, UCRLID- 116113, Livermore, Lawrence Livermore National Laboratories, 1994.
  • [39] Davis W.C., Shock Desensitizing of Solid Explosive, Proc., Symp. Detonation, 14th, Coeur d’Alene, Idaho, April 11-16, 2010.
  • [40] DeOliveira G., Numerical Studies of the Behaviour of Heterogeneous Explosives Using the Ignition-and-growth Model, PhD Thesis, New York, Rensselaer Polytechnic Institute, 2006.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ccaf79b8-712b-4df6-a550-e35e4a578bf1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.