PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The role of the strengthening phases on the HAZ liquation cracking in a cast Ni‑based superalloy used in industrial gas turbines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the influence of microstructural constituents on liquation crack formation in the cast Ni-based superalloy, Rene 108. The investigation was divided into three parts: characterisation of the material's microstructure in pre-weld condition, hot ductility studies and analysis of liquation cracking induced by the gas tungsten arc welding process. Using advanced electron microscopy techniques it is shown that the base material in pre-weld condition is characterised by a complex microstructure. The phases identified in Rene 108 include γ matrix, γ' precipitates, MC and M23C6 carbides, and M5B3 borides. Based on Gleeble testing, it was found that Rene 108 is characterised by high strength at elevated temperatures with a maximum of 1107 MPa at 975 °C. As a result of constitutional liquation, the superalloy’s strength and ductility were significantly reduced. The nil strength temperature was equal to 1292 °C, while the nil ductility temperature was 1225 °C. The low ductility recovery rate (32.1), ratio of ductility recovery (36.2) and hot cracking factor (Rf = 0.05) values confirmed the low weldability of Renѐ 108. In the heat-affected zone (HAZ) induced by welding, constitutional liquation of mainly γ' precipitates, with a contribution of M23C6 carbides and M5B3 borides, was observed. The thin non-equilibrium liquid film, which formed along high-angle grain boundaries, led to crack initiation and their further propagation during cooling. The eutectic γ–γ' re-solidification products are visible on the crack edges.
Rocznik
Strony
art. no. e119, 2023
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
  • Łukasiewicz Research Network-Krakow Institute of Technology, Zakopiańska 73, 30‑418 Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
autor
  • Investment Casting Division, Consolidated Precision Products Corporation, Hetmańska 120, 35‑078 Rzeszow, Poland
  • Department of Engineering Science, University West, Gustava Melins Gata 2, 46132 Trollhattan, Sweden
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
  • Chair of Materials Engineering of Additive Manufacturing, Technical University of Munich, Boltzmannstr. 15, 85748 Garching/Munich, Germany
  • Department of Engineering Science, University West, Gustava Melins Gata 2, 46132 Trollhattan, Sweden
autor
  • Chair of Materials Engineering of Additive Manufacturing, Technical University of Munich, Boltzmannstr. 15, 85748 Garching/Munich, Germany
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Krakow, Poland
Bibliografia
  • 1. Gurrappa I, Yashwanth IVS, Gogia AK. The selection of materials for marine gas turbine engines. In: Volkov K, editor. Efficiency, performance and robustness of gas turbines. London: Intech open; 2012. p. 51-70.
  • 2. Sims C. Superalloys II: high-temperature materials for aerospace and industrial power. New York: Wiley; 2014. p. 1987.
  • 3. Reed R, Rae C. Physical metallurgy of the nickel-based superalloy. In: Laughlin D, Hono K, editors. Physical metallurgy. Elsevier; 2014. p. 2215-90.
  • 4. Matysiak H, Zagorska M, Andersson J, Balkowiec A, Cygan R, Rasiński M, Pisarek M, Andrzejczuk M, Kubiak K, Kurzydłowski K. Microstructure of Haynes R282R superalloy after vacuum induction melting and investment casting of thin-walled components. Mater. 2013;6:5016-37. https://doi.org/10.3390/ma6115016.
  • 5. Rakoczy Ł, Grudzień M, Tuz L, Pańcikiewicz K, Zielińska-Lipiec A. Microstructure and properties of a repair weld in a nickel based superalloy gas turbine component. Adv Mater Sci. 2017;17:55-63. https://doi.org/10.1515/adms-2017-0011.
  • 6. Ojo O, Richards N, Chaturvedi M. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scri Mater. 2004;50:641-6. https://doi.org/10.1016/j.scriptamat.2003.11.025.
  • 7. Rakoczy Ł, Grudzień M, Zielińska-Lipiec A. Contribution of microstructural constituents on hot cracking of MAR-M247 nickel based supealloy. Arch Met Mat. 2018;63(1):181-9. https://doi. org/10.24425/118926.
  • 8. Singh S, Andersson J. Hot cracking in cast alloy 718. Sci Technol Weld Join. 2018;23:568-74. https://doi.org/10.1080/13621718.2018.1429238.
  • 9. Taheri M, Razavi M, Kashani-Bozorg SF, Torkmany MJ. Relationship between solidification and liquation cracks in the joining of GTD-111 nickel-based superalloy by Nd:YAG pulsed-laser welding. J Mater Res Technol. 2021;15:5635-49. https://doi.org/10.1016/j.jmrt.2021.11.007.
  • 10. Li Q, Xie J, Yu J, Shu D, Hou G, Sun X, Zhou Y. Solidification behavior and segregation characteristics of high W-content cast Ni-based superalloy K416B. J All Comp. 2021;854:156027. https://doi.org/10.1016/j.jallcom.2020.156027.
  • 11. Lippold J, Kiser S, DuPont J. Welding metallurgy and weldability of nickel-base alloys. New Jersey: Wiley; 2009.
  • 12. Radhakrishnan B. Interface controlled precipitate dissolution and constitutional liquation. Inter Sci. 1993;1:175-82. https://doi.org/10.1007/BF00203607.
  • 13. Grosdidier T, Hazotte A, Simon A. Precipitation and dissolution process in γ/γ’ single crystal nickel-based superalloy. Mat Sci Eng A. 1998;256:183-96. https://doi.org/10.1016/S0921-5093(98)00795-3.
  • 14. Hewitt P, Butler E. Mechanisms and kinetics of θ’ dissolution in Al-3% Cu. Acta Metall. 1986;34:1163-72. https:// doi.org/10.1016/0001-6160(86)90002-7.
  • 15. Standard ISO/TR 17641-3 (2005) Destructive tests on welds in metallic materials - hot cracking tests for weldments - arc welding processes - part 3: externally loaded tests.
  • 16. Rakoczy Ł, Milkovič O, Rutkowski B, Cygan R, Grudzień-Rakoczy M, Kromka F, Zielińska-Lipiec A. Characterization of γ′ precipitates in cast Ni-based superalloy and their behaviour at high-homologous temperatures studied by TEM and in situ XRD. Mater. 2020;13:2397. https://doi.org/10.3390/ma13102397.
  • 17. Rakoczy Ł, Grudzień-Rakoczy M, Hanning F, Cempura G, Cygan R, Andersson J, Zielińska-Lipiec A. Investigation of the γ′ precipitates dissolution in a Ni-based superalloy during stress-free short-term annealing at high homologous temperatures. Metall Mater Trans A. 2021;52:4767-84. https://doi.org/10.1007/s11661-021-06420-4.
  • 18. Goldschmidt H. Effect of boron additions to austenitic stainless steels. J Iron Steel Inst. 1971;209:900-9.
  • 19. Perevislov S, Vysotin A, Shcherbakova O. Studying the properties of carbides in the system ZrC-HfC, TaC-ZrC and TaC-HfC. IOP Conf Ser: Mater Sci Eng. 2020;848:012069. https://doi.org/10.1088/1757-899X/848/1/012069.
  • 20. Singh S, Hanning F, Andersson J. Influence of homogenisation treatments on the hot ductility of cast ATIR 718PlusR: effect of niobium and minor elements on liquation characteristics. Mat Sci Eng A. 2021;799:140151. https://doi.org/10.1016/j.msea.2020.140151.
  • 21. Adamiec J, Konieczna N. Assessment of the hot cracking susceptibility of the Inconel 617 nickel-based alloy. Arch Metall Mat. 2021;66:241-8. https://doi.org/10.24425/amm.2021.134781.
  • 22. Ojo O, Richards N, Chaturvedi M. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scr Mater. 2004;50(5):641-6. https://doi.org/10.1016/j.scriptamat.2003.11.025.
  • 23. Rosenthal R, West D. Discontinuous γ’-precipitation in directionally solidified IN 738 LC alloy. Mat Sci Tech. 1986;2:169-74. https://doi.org/10.1179/mst.1986.2.2.169.
  • 24. Sponseller D. Differential thermal analysis of nickel-base superalloys. In: Kissinger R, editor. Superalloys, 1996. Pennsylvania: TMS (The Minerals, Metals & Materials Society); 1996. p. 259-70.
  • 25. Ojo OA, Richards NL, Chaturvedi MC. Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scr Mat. 2004;50:641-6. https://doi.org/10.1016/j.scriptamat.2003.11.025.
  • 26. Ojo O, Richards N, Chaturvedi M. Liquid film migration of constitutionally liquated γ’ in weld heat affected zone (HAZ) of Inconel 738LC superalloy. Scr Mater. 2004;51:141-6. https://doi.org/10.1016/j.scriptamat.2004.03.040.
  • 27. Kotval PS, Venables JD, Calder RW. The role of hafnium in modyifying the microstructure of cast nickel-base superalloys. Metall Mat Trans B. 1972;3:457-62. https://doi.org/10.1007/BF02642049.
  • 28. Jingwei C, Salvati E, Uzun F, Papadaki C, Wang Z, Everaerts J, Korsunsky AM. An experimental and numerical analysis of residual stresses in a TIG weldment of a single crystal nickel-base superalloy. J Manuf Proc. 2020;53:190-200. https://doi.org/10.1016/j.jmapro.2020.02.007.
  • 29. Baeslack WA III, West SL, Kelly TJ. Weld cracking in Ta-modified cast Inconel 718. Scri Metall. 1988;22:729-34. https://doi.org/10.1016/S0036-9748(88)80191-1.
  • 30. Aritonang S, Ezha Kurniasari WS, Juhana R, Herawan T. Analyzing tantalum carbide (TaC) and hafnium carbide (HfC) for spacecraft material. In: Zahid M, Sani A, Mohamad Yasin M, Ismail Z, Lah N, Turan F, editors. Recent trends in manufacturing and materials towards industry 4.0. Lecture notes in mechanical engineering. Singapore: Springer; 2021.
  • 31. Bai G, Li J, Hu R, Zhang T, Kou H, Fu H. Effect of thermal exposure on the stability of carbides in Ni-Cr-W based superalloy. Mat Sci Eng A. 2011;528:2339-44. https://doi.org/10.1016/j.msea.2010.11.088.
  • 32. Li S, Li K, Hu M, Wu Y, Cai Z, Pan J. The mechanism for HAZ liquation of nickel-based alloy 617B during gas tungsten arc welding. Metals. 2010;10:94. https://doi.org/10.3390/met10010094.
  • 33. Despres A, Antonov S, Mayer C, Tassin C, Veron M, Blandin J, Kontis P, Martin G. On the role of boron, carbon and zirconium on hot cracking and creep resistance of an additively manufactured polycrystalline superalloy. Mater. 2021;19:101193. https://doi.org/10.1016/j.mtla.2021.101193.
  • 34. Grodzki J, Hartmann N, Rettig R, Affeldt E, Singer RF. Effect of B, Zr, and C on hot tearing of a directionally solidified nickel-based superalloy. Metall Mater Trans A. 2016;47:2914-26. https://doi.org/10.1007/s11661-016-3416-8.
  • 35. Osoba L. A study on laser weldability improvement of newly developed Haynes 282 superalloy. PhD thesis, University of Manitoba, 2012.
  • 36. Straumal A, Yardley V, Straumal B, Rodin A. Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu-In system. J Mater Sci. 2015;50:4762-71. https://doi.org/10.1007/s10853-015-9025-x.
  • 37. Straumal B, Kilmametov A, Mazilkin A, Gornakova A, Fabrichnaya O, Kriegel M, Rafaja D, Bulatov M, Nekrasov A, Baretzky B. Formation of the ω phase in the titanium-iron system under shear deformation. JETP Lett. 2020;111(10):568-74.
  • 38. Straumal B, Korneva A, Kuzmin A, Lopez G, Rabkin E, Straumal A, Gerstein G, Gornakova A. The grain boundary wetting phenomena in the Ti-containing high-entropy alloys: a review. Metals. 2021;11(11):1881. https://doi.org/10.3390/met11111881.
  • 39. Radhakrishnan B, Thompson RG. Liquid film migration (LFM) in the weld heat affected zone (HAZ) of a Ni-base superalloy. Scr Metall Mater. 1990;24:537. https://doi.org/10.1016/0956-716X(90)90197-O.
  • 40. Ojo OA, Richards NL, Chaturvedi MC. Microstructural characterization of Incoloy 903 weldments. Metall Mater Trans. 1993;24:1169-79. https://doi.org/10.1007/BF02657248.
  • 41. Miller WA, Chadwick GA. On magnitude of solid/liquid interfacial energy of pure metals and its relation to grain boundary melting. Acta Met. 1967;15:607-14. https://doi.org/10.1016/0001-6160(67)90104-6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cca709e8-e2cb-4dfc-bf62-333eea1953c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.