PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Food Waste Mitigation with Black Soldier Fly Assistance on Climate Change in Indonesia – A Systematic Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate changes in the world and Indonesia cannot be separated from human activities. Food waste is an act of throwing away food which can result in climate change due to the high potential for global warming due to this activity. Therefore, there is a need for mitigation in the form of food waste processing, one of which is the black soldier fly (BSF) method. This study aimed to determine the development trend of the impact of food waste in Indonesia on climate change and determine the effect of mitigating food waste processing using the BSF method. The analysis used in this study was bibliometric, and a systematic literature review was applied to 298 published articles. It was found that the publication trend of articles regarding the impact of food waste on climate change in Indonesia is still tiny, namely seven publications. In the impact analysis of mitigating food waste processing using the BSF method was proven to reduce global warming potential by 1,201.58 kg CO2eq and 1,143.4 kg CO2eq. This value compares food waste processing using the BSF and landfilling methods. Results were also obtained from the processing of food waste using only the BSF method for global warming potential values of 0.38 kg CO2eq, 6,687 kg CO2eq, and 3.2 kg CO2eq.
Słowa kluczowe
Twórcy
  • Master Program of Environmental Engineering, Department of Environmental Engineering, Diponegoro University, Prof. Soedharto, S.H. Street, 50275, Tembalang, Semarang, Indonesia
  • Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Prof. Soedharto, S.H. Street, 50275, Tembalang, Semarang, Indonesia
autor
  • Department of Environmental Engineering, Faculty of Engineering, Diponegoro University, Prof. Soedharto, S.H. Street, 50275, Tembalang, Semarang, Indonesia
Bibliografia
  • 1. Abduli, M., Naghib, A., Yonesi, M., & Akbari, A. 2011. Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environmental monitoring and assessment, 178, 487-498.
  • 2. Abu-Bakar, N.A., Roslan, A.M., Hassan, M.A., Rahman, M.H.A., Ibrahim, K.N., Abd Rahman, M. D., & Mohamad, R. 2023. Environmental impact assessment of rice mill waste valorisation to glucose through biorefinery platform. Scientific reports, 13(1), 14767.
  • 3. Al-Rumaihi, A., McKay, G., Mackey, H.R., & Al-Ansari, T. 2020. Environmental impact assessment of food waste management using two composting techniques. Sustainability, 12(4), 1595.
  • 4. Aydin, A.E., & Yildirim, P. 2021. Understanding food waste behavior: The role of morals, habits and knowledge. Journal of Cleaner Production, 280, 124250.
  • 5. Budihardjo, M.A., Humaira, N.G., Ramadan, B.S., Wahyuningrum, I.F.S., & Huboyo, H.S. 2023. Strategies to reduce greenhouse gas emissions from municipal solid waste management in Indonesia: The case of Semarang City. Alexandria Engineering Journal, 69, 771-783.
  • 6. Change, I.P.O.C. 2007. Climate change 2007: The physical science basis. Agenda, 6(07), 333.
  • 7. Chen, J., Fan, Y., Zhao, X., Jiaqiang, E., Xu, W., Zhang, F., Liu, S. 2020. Experimental investigation on gasification characteristic of food waste using supercritical water for combustible gas production: Exploring the way to complete gasification. Fuel, 263, 116735.
  • 8. Cheng, F., Luo, H., & Colosi, L. M. 2020. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Conversion and Management, 223, 113258.
  • 9. Dhamodharan, K., Varma, V.S., Veluchamy, C., Pugazhendhi, A., & Rajendran, K. 2019. Emission of volatile organic compounds from composting: A review on assessment, treatment and perspectives. Science of The Total Environment, 695, 133725.
  • 10. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W.M. 2021. How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296.
  • 11. Edenhofer, O. 2015. Climate change 2014: mitigation of climate change (Vol. 3): Cambridge University Press.
  • 12. Elkhalifa, S., Al-Ansari, T., Mackey, H.R., & McKay, G. 2019. Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144, 310-320.
  • 13. Ermolaev, E., Lalander, C., & Vinnerås, B. 2019. Greenhouse gas emissions from small-scale fly larvae composting with Hermetia illucens. Waste Management, 96, 65-74.
  • 14. Farahdiba, A.U., Warmadewanthi, I., Fransiscus, Y., Rosyidah, E., Hermana, J., & Yuniarto, A. 2023. The present and proposed sustainable food waste treatment technology in Indonesia: A review. Environmental Technology & Innovation, 103256.
  • 15. Fawzy, S., Osman, A.I., Doran, J., & Rooney, D.W. 2020. Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069-2094.
  • 16. Ferronato, N., Paoli, R., Romagnoli, F., Tettamanti, G., Bruno, D., & Torretta, V. 2023. Environmental impact scenarios of organic fraction municipal solid waste treatment with Black Soldier Fly larvae based on a life cycle assessment. Environmental Science and Pollution Research, 1-19.
  • 17. Gao, A., Tian, Z., Wang, Z., Wennersten, R., & Sun, Q. 2017. Comparison between the technologies for food waste treatment. Energy Procedia, 105, 3915-3921.
  • 18. Gjerris, M., & Gaiani, S. 2013. Household food waste in Nordic countries: Estimations and ethical implications. Etikk i praksis-Nordic Journal of Applied Ethics(1), 6-23.
  • 19. Gold, M., Egger, J., Scheidegger, A., Zurbrügg, C., Bruno, D., Bonelli, M., Kerkaert, B. 2020. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion. Waste Management, 112, 40-51.
  • 20. Grossule, V., Zanatta, S., Modesti, M., & Lavagnolo, M.C. 2023. Treatment of food waste contaminated by bioplastics using BSF larvae: Impact and fate of starch-based bioplastic films. Journal of environmental management, 330, 117229.
  • 21. Guimaraes, C.d.S., Maia, D.R.d.S., & Serra, E.G. 2018. Construction of biodigesters to optimize the production of biogas from anaerobic co-digestion of food waste and sewage. Energies, 11(4), 870.
  • 22. Guo, H., Jiang, C., Zhang, Z., Lu, W., & Wang, H. 2021. Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae (Hermetia illucens L.). Science of The Total Environment, 750, 141656.
  • 23. Ivanovich, C.C., Sun, T., Gordon, D.R., & Ocko, I.B. 202. Future warming from global food consumption. Nature Climate Change, 13(3), 297-302.
  • 24.Jiang, X., Zhao, Y., & Yan, J. 2022. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review. Environmental Pollution, 119878.
  • 25. Kashyap, D., de Vries, M., Pronk, A., & Adiyoga, W. 2023. Environmental impact assessment of vegetable production in West Java, Indonesia. Science of the Total Environment, 864, 160999.
  • 26. Kusumaningtiar, D.A., Vionalita, G., & Swamilaksita, P.D. 2023. Sustainability Life Cycle Assessment (LCA) Of Household Food Waste Management in Urban Areas. Journal of Research and Health, 13(6), 9-9.
  • 27. Lalander, C., Nordberg, Å., & Vinnerås, B. 2018. A comparison in product‐value potential in four treatment strategies for food waste and faeces–assessing composting, fly larvae composting and anaerobic digestion. GCB bioenergy, 10(2), 84-91.
  • 28. Lavany, M.Q.A. 2022. Pengaruh pdrb per kapita, kepadatan penduduk, tingkat pendidikan dan belanja lingkungan hidup terhadap timbulan sampah di pulau jawa tahun 2010-2019. Journal of Development Economic and Social Studies, 1(4).
  • 29. Lee, E., Bittencourt, P., Casimir, L., Jimenez, E., Wang, M., Zhang, Q., & Ergas, S.J. 2019. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Management, 95, 432-439.
  • 30. Liu, S., Liu, M., Jiang, H., Lin, Y., & Xu, K. 2019. International comparisons of themes in higher education research. Higher Education Research & Development, 38(7), 1445-1460.
  • 31. Lopes, I.G., Lalander, C., Vidotti, R.M., & Vinnerås, B. 2020. Using Hermetia illucens larvae to process biowaste from aquaculture production. Journal of Cleaner Production, 251, 119753.
  • 32. Mary, R., Nasir, R., Alam, A., Tariq, A., Nawaz, R., Javied, S., Khan, S.N. 2023. Exploring hazard quotient, cancer risk, and health risks of toxic metals of the Mehmood Booti and Lakhodair landfill ground-waters, Pakistan. Environmental Nanotechnology, Monitoring & Management, 20, 100838.
  • 33. Mayer, F., Bhandari, R., Gäth, S.A., Himanshu, H., & Stobernack, N. 2020. Economic and environmental life cycle assessment of organic waste treatment by means of incineration and biogasification. Is source segregation of biowaste justified in Germany? Science of The Total Environment, 721, 137731.
  • 34. Melikoglu, M., Lin, C.S.K., & Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3, 157-164.
  • 35. Mendieta, O., Castro, L., Escalante, H., & Garfí, M. 2021. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresource technology, 326, 124783.
  • 36. Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., & Gasco, L. 2018. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. Journal of the Science of Food and Agriculture, 98(15), 5776-5784.
  • 37. Mertenat, A., Diener, S., & Zurbrügg, C. 2019. Black Soldier Fly biowaste treatment–Assessment of global warming potential. Waste Management, 84, 173-181.
  • 38. Moazzem, S., Wang, L., Daver, F., & Crossin, E. 2021. Environmental impact of discarded apparel landfilling and recycling. Resources, Conservation and Recycling, 166, 105338.
  • 39. Moe, S. J., De Schamphelaere, K., Clements, W. H., Sorensen, M. T., Van den Brink, P. J., & Liess, M. 2013. Combined and interactive effects of global climate change and toxicants on populations and communities. Environmental toxicology and chemistry, 32(1), 49-61.
  • 40. Mondello, G., Salomone, R., Ioppolo, G., Saija, G., Sparacia, S., & Lucchetti, M.C. 2017. Comparative LCA of alternative scenarios for waste treatment: The case of food waste production by the mass-retail sector. Sustainability, 9(5), 827.
  • 41. Nugroho, R.A., Rofiq, M.N., Santoso, A.D., Yanuar, A.I., Hanifa, R., & Nadirah, N. 2023. Bioconversion of biowaste by black soldier fly larvae (Hermetia illucens L.) for dried larvae production: A life cycle assessment and environmental impact analysis. F1000Research, 12.
  • 42. Ojha, S., Bußler, S., & Schlüter, O.K. 2020. Food waste valorisation and circular economy concepts in insect production and processing. Waste Management, 118, 600-609.
  • 43. Palaniveloo, K., Amran, M.A., Norhashim, N.A., Mohamad-Fauzi, N., Peng-Hui, F., Hui-Wen, L., Jing-Yi, L. 2020. Food waste composting and microbial community structure profiling. Processes, 8(6), 723.
  • 44. Pang, W., Hou, D., Chen, J., Nowar, E.E., Li, Z., Hu, R., Wang, S. 2020. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. Journal of environmental management, 260, 110066.
  • 45. Paul, J., & Criado, A.R. 2020. The art of writing literature review: What do we know and what do we need to know? International business review, 29(4), 101717.
  • 46. Pautasso, M. 2019. The structure and conduct of a narrative literature review. A Guide to the Scientific Career: Virtues, Communication, Research and Academic Writing, 299-310.
  • 47. Pliantiangtam, N., Chundang, P., & Kovitvadhi, A. 2021. Growth performance, waste reduction efficiency and nutritional composition of black soldier fly (Hermetia illucens) larvae and prepupae reared on coconut endosperm and soybean curd residue with or without supplementation. Insects, 12(8), 682.
  • 48. Pour, F.H., & Makkawi, Y.T. 2021. A review of postconsumption food waste management and its potentials for biofuel production. Energy Reports, 7, 7759-7784.
  • 49. Rahman, M.M., Lee, Y.S., Tamiri, F.M., & Hong, M.G.J. 2018. Anaerobic digestion of food waste. Anaerobic Digestion Processes: Applications and Effluent Treatment, 105-122.
  • 50. Safarian, S., Unnthorsson, R., & Richter, C. 2020. Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy, 197, 117268.
  • 51. Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S., & Savastano, D. 2017. Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890-905.
  • 52. Sauve, G., & Van Acker, K. 2020. The environmental impacts of municipal solid waste landfills in Europe: A life cycle assessment of proper reference cases to support decision making. Journal of environmental management, 261, 110216.
  • 53. Singh, A., & Kumari, K. 2019. An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. Journal of environmental management, 251, 109569.
  • 54. Smetana, S., Schmitt, E., & Mathys, A.2019. Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation and Recycling, 144, 285-296.
  • 55. Surendra, K., Tomberlin, J.K., van Huis, A., Cammack, J.A., Heckmann, L.-H. L., & Khanal, S. K. 2020. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera: Stratiomyidae) (BSF). Waste Management, 117, 58-80.
  • 56. Ubfal, D., & Maffioli, A. 2011. The impact of funding on research collaboration: Evidence from a developing country. Research Policy, 40(9), 1269-1279.
  • 57. Vaverková, M.D. 2019. Landfill impacts on the environment. Geosciences, 9(10), 431.
  • 58. Vaverková, M.D., Adamcová, D., Winkler, J., Koda, E., Petrželová, L., & Maxianová, A. 2020. Alternative method of composting on a reclaimed municipal waste landfill in accordance with the circular economy: Benefits and risks. Science of The Total Environment, 723, 137971.
  • 59. Wang, K., & Nakakubo, T. 2020. Comparative assessment of waste disposal systems and technologies with regard to greenhouse gas emissions: A case study of municipal solid waste treatment options in China. Journal of Cleaner Production, 260, 120827.
  • 60. Wibowo, Y.G., Ramadan, B.S., Taher, T., & Khairurrijal, K. 2023. Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. Biomedical Materials & Devices, 1-24.
  • 61. Xi-Liu, Y., & Qing-Xian, G. 2018. Contributions of natural systems and human activity to greenhouse gas emissions. Advances in Climate Change Research, 9(4), 243-252.
  • 62. Xu, Z., Qi, H., Yao, D., Zhang, J., Zhu, Z., Wang, Y., & Cui, P. 2022. Modeling and comprehensive analysis of food waste gasification process for hydrogen production. Energy Conversion and Management, 258, 115509.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cca403b9-a7bb-4d8c-a151-b18617b1a513
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.