Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a new multiple fiber Bragg grating (FBG) sensing system based on active mode-locking fiber laser is proposed. The active mode-locking fiber laser is composed of a linear cavity with an Fabry–Perot laser diode (F-P LD) as a reflective cavity mirror, and the erbium-doped fiber as the gain medium. Meanwhile, the F-P LD is also used as the modulating element of the fiber laser. Multiple FBGs cascaded in a long fiber are used as both the sensors in the system and the components for wavelength selection in the active mode-locking fiber laser. The capacity of the proposed sensing system to interrogate multiple FBGs in wavelength and spatial domain is investigated. The proposed sensing system has the characteristics of low cost, good stability, good compatibility, and can be used in quasi-distributed multi-point sensing.
Czasopismo
Rocznik
Tom
Strony
375--384
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
- Jiangsu Institute of Quality and Standardization, Nanjing 210029, China
autor
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
autor
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Bibliografia
- [1] DING W., JIANG Y., GAO R., LIU Y., High-temperature fiber-optic Fabry–Perot interferometric sensors, Review of Scientific Instruments 86(5), 2015, 055001, DOI: 10.1063/1.4919409.
- [2] LI W.C., YUAN Y.G., YANG J., YUAN L.B., In-fiber integrated high sensitivity temperature sensor based on long Fabry–Perot resonator, Optics Express 27(10), 2019, pp. 14675–14683, DOI: 10.1364/OE.27.014675.
- [3] WANG X., CHEN T.W., MENG D.L., WANG F., A simple FBG Fabry–Perot sensor system with high sensitivity based on fiber laser beat frequency and Vernier effect, IEEE Sensors Journal 21(1), 2020, pp. 71–75, DOI: 10.1109/JSEN.2020.2974501.
- [4] LIU Y., WANG D.N., Fiber in-line Fabry–Perot interferometer with offset splicing for strain measurement with enhanced sensitivity, IEEE Photonics Journal 10(1), 2018, 7100708, DOI: 10.1109/JPHOT.2017.2739198.
- [5] LIU S., WANG Y., LIAO C., WANG G., LI Z., WANG Q., ZHOU J., YANG K., ZHONG X., ZHAO J., TANG J., High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer, Optics Letters 39(7), 2014, pp. 2121–2124, DOI: 10.1364/OL.39.002121.
- [6] Wang D., Zhang Y., Jin B.Q., Wang Y., Zhang M.J., Quasi-distributed optical fiber sensor for liquid-level measurement, IEEE Photonics Journal 9(6), 2017, 6805107, DOI: 10.1109/JPHOT.2017.2776245.
- [7] Hu D.T., Lv S.K., Guo Y.X., He H.G., Liu J.Y., A fiber Bragg grating force sensor with sensitization structure, IEEE Sensors Journal 21(3), 2021, pp. 3042–3048, DOI: 10.1109/JSEN.2020.3027569.
- [8] ZHENG Y., ZHU Z.W., XIAO W., GU D.M., DENG Q.X., Investigation of a quasi-distributed displacement sensor using the macro-bending loss of an optical fiber, Optical Fiber Technology 55, 2020, 102140, DOI: 10.1016/j.yofte.2020.102140.
- [9] GAO X., WANG G., ZHAI C., et al., Quasi-distributed optical fiber liquid leakage sensors based on lateral coupling structure, Optical Technique 45(4), 2019, pp. 453–457.
- [10] XIANG Y., LUO Y., LI Y., LI Y., YAN Z.J., LIU D.M., SUN Q.Z., Quasi-distributed dual-parameter optical fiber sensor based on cascaded microfiber Fabry–Perot interferometers, IEEE Photonics Journal 10(2), 2018, 2400309, DOI: 10.1109/JPHOT.2018.2817573.
- [11] WANG C.J., LI Z.Y., GUI X., FU X.L.,WANG F., WANG H.H., WANG J.Q., BAO X.Y., Micro-cavity array with high accuracy for fully distributed optical fiber sensing, Journal of Lightwave Technology 37(3), 2019, pp. 927–932, DOI: 10.1109/JLT.2018.2883824.
- [12] WANG D.Y., WANG Y.M., MING H., GONG J.M., WANG A., Fully distributed fiber-optic biological sensing, IEEE Photonics Technology Letters 22(21), 2010, pp. 1553–1555, DOI: 10.1109/LPT.2010.2069089.
- [13] WANG D.Y., WANG Y., GONG J., WANG A., Fully distributed fiber-optic temperature sensing using acoustically-induced rocking grating, Optics Letters 36(17), 2011, pp. 3392–3394, DOI: 10.1364/OL.36.003392.
- [14] XIE F., ZHANG S.L., LI Y., LEE S.B., Multiple in-fiber Bragg gratings sensor with a grating scale, Measurement 31(2), 2002, pp. 139–142, DOI: 10.1016/S0263-2241(01)00038-0.
- [15] XIE F., ZHANG S.L., LI Y., LEE S.B., Temperature-compensating multiple fiber Bragg grating strain sensors with a metrological grating, Optics and Lasers in Engineering 41(1), 2004, pp. 205–216, DOI: 10.1016/S0143-8166(02)00145-8.
- [16] ZHANG X., NIU H., HOU C., DI F., An edge-filter FBG interrogation approach based on tunable Fabry–Perot filter for strain measurement of planetary gearbox, Optical Fiber Technology 60, 2020, 102379, DOI: 10.1016/j.yofte.2020.102379.
- [17] ZHAN Y., LIN F., SONG Z., SUN Z., YU M., Applications and research progress of optical fiber grating sensing in thermoplastic composites molding and structure health monitoring, Optik 229, 2021, 166122, DOI: 10.1016/j.ijleo.2020.166122.
- [18] CHAN C. C., GONG J.M., SHI C.Z., JIN W., ZHANG M., ZHOU L.M., DEMOKAN M.S., Improving measurement accuracy of fiber Bragg grating sensor using digital matched filter, Sensors and Actuators A: Physical 104(1), 2003, pp. 19–24, DOI: 10.1016/S0924-4247(02)00437-5.
- [19] KERSEY D., MOREY W.W., Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation, Electronics Letters 29(1), 1993, pp. 112–114, DOI: 10.1049/el:19930073.
- [20] CHEN D., SHU C., HE S., Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser, Optics Letters 33(13), 2008, pp. 1395–1397, DOI: 10.1364/OL.33.001395.
- [21] MADRIGAL J., FRAILE-PELÁEZ F.J., ZHENG D., BARRERA D., SALES S., Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme, Optics Express 25(20), 2017, pp. 24650–24657, DOI: 10.1364/OE.25.024650.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cca1cf9b-8fd5-4fb7-a048-765fd4b99adb