PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three dimensional angle domain double square root migration in VTI media for the large scale wide azimuth seismic data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the development of oil and gas exploration, the conventional seismic migration imaging technology based on the isotropic assumption no longer meets our current requirements for high-resolution images. Migration in anisotropic media has become an essential requirement for oil and gas exploration. Marine seismic exploration has gradually entered the wide azimuth and high-density seismic data acquisition stage. However, even for current large high-performance computer clusters, it is still very difcult to implement pre-stack depth migration based on shot gathers. Thus, we present a double-square-root (DSR) equation based on three-dimensional (3D) pre-stack depth migration in midpoint-ofset domain for a wide-azimuth dataset in transversely isotropic media with a vertical symmetry axis (VTI media). Considering VTI media, the DSR migra tion requires extensive memory and computation; we adopted the phase-shift plus interpolation approach to improve the computational efciency. Then, we extract the angle-domain common-image gathers (ADCIGs) during DSR migration. For real large-scale seismic data, we designed an efective parallel implementation of 3D DSR migration with ADCIGs outputs. Finally, we applied the proposed angle-domain VTI DSR migration on wide-azimuth SEG/EAGE salt dome-based data and real data from the China South Sea. Numerical and practical data illustrate the efectiveness of the proposed method.
Czasopismo
Rocznik
Strony
1021--1037
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
  • Wave Phenomena and Intelligent Inversion Imaging Group (WPI), School of Ocean and Ear
autor
  • Wave Phenomena and Intelligent Inversion Imaging Group (WPI), School of Ocean and Ear
  • Wave Phenomena and Intelligent Inversion Imaging Group (WPI), School of Ocean and Ear
  • Wave Phenomena and Intelligent Inversion Imaging Group (WPI), School of Ocean and Ear
Bibliografia
  • 1. Alkhalifah T (1998) Acoustic approximations for processing in transversely isotropic media. Geophysics 63(2):623–631
  • 2. Alkhalifah T (2000a) An acoustic wave equation for anisotropic media. Geophysics 65(4):1239–1250. https://doi.org/10.1190/1.1444815
  • 3. Alkhalifah T (2000b) Prestack phase-shift migration of separate offsets. Geophysics 65(4):1179–1194
  • 4. Alkhalifah T (2000c) The offset-midpoint traveltime equation for transversely isotropic media. Geophysics 65(4):1316–1325
  • 5. Alkhalifah T (2004) Azimuth moveout correction for transversely isotropic media. Geophys Prospect 52(1):39–48
  • 6. Alkhalifah T (2012) Prestack exploding reflector modeling and migration for anisotropic media: a parameter estimation tool. In 82th SEG annual international meeting. Expanded abstracts, pp 1–5
  • 7. Alkhalifah T (2013) Prestack wavefield approximations. Geophysics 78(5):T141–T149
  • 8. Alkhalifah T (2015) Prestack exploding reflector modeling and migration for anisotropic media. Geophys Prospect 63(1):2–10
  • 9. Alkhalifah T, Biondi B (2004) Numerical analysis of the azimuth moveout operator for vertically inhomogeneous media. Geophysics 69(2):554–561
  • 10. Alkhalifah T, Fomel S (2011) Angle gathers in wave-equation imaging for transversely isotropic media. Geophys Prospect 59(3):422–431
  • 11. Alkhalifah T, Larner K (1994) Migration errors in transversely isotropic media. Geophysics 59(9):1405–1418
  • 12. Alkhalifah T, Fomel S, Biondi B (2001) The space–time domain: theory and modelling for anisotropic media. Geophys J Int 144(1):105–113
  • 13. Alkhalifah T, Fomel S, Wu Z (2015) Source-receiver two-way wave extrapolation for prestack exploding-reflector modeling and migration. Geophys Prospect 63:23–34
  • 14. Barley B, Summers T (2007) Multi-azimuth and wide-azimuth seismic: shallow to deep water, exploration to production. Lead Edge 26(4):450–458. https://doi.org/10.1190/1.2723209
  • 15. Baysal E, Kosloff DD, Sherwood JWC (1983) Reverse time migration. Geophysics 48(11):1514–1524. https://doi.org/10.1190/1.1441434
  • 16. Bevc D, Fliedner M, Crawley S, Biondi B (2003) Wave equation imaging comparisons: survey sinking vs. shot profile methods. In 73th SEG annual international meeting. Expanded abstracts, pp 885–888. https://doi.org/10.1190/1.1818082
  • 17. Biondi B (2002) Reverse time migration in midpoint-offset coordinates. SEP Rep 111:149–156
  • 18. Biondi B (2007) Angle-domain common-image gathers from anisotropic migration. Geophysics 72(2):581–591
  • 19. Biondi B, Chemingui N (1994) Transformation of 3-D prestack data by azimuth moveout (AMO). In 64th SEG annual international meeting. Expanded abstracts, pp 1541–1544. https://doi.org/10.1190/1.1822833
  • 20. Biondi B, Palacharla G (1996) 3D prestack migration of common-azimuth data. Geophysics 61(6):1822–1832. https://doi.org/10.1190/1.1822730
  • 21. Biondi B, Symes W (2004) Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging. Geophysics 69(5):1283–1298. https://doi.org/10.1190/1.1801945
  • 22. Biondi B, Fomel S, Chemingui N (1998) Azimuth moveout for 3-D prestack imaging. Geophysics 63(2):574–588. https://doi.org/10.1190/1.1444357
  • 23. Bouska J (2008) Advantages of wide-patch, wide-azimuth ocean-bottom seismic reservoir surveillance. Lead Edge 27(12):1662–1681. https://doi.org/10.1190/1.3036972
  • 24. Cai J, Fang W, Wang H (2013) Azimuth–opening angle domain imaging in 3D Gaussian beam depth migration. J Geophys Eng 10(2):025013
  • 25. Cheng J, Wang H, Ma Z, Yang S (2003) Cross-line common-offset migration for narrow azimuth dataset. In73th SEG annual international meeting. Expanded abstracts, pp 901–904. https://doi.org/10.1190/1.1818087
  • 26. Cheng J, Wang H, Ma Z (2005) Double square root equation migration methods of narrow azimuth seismic data. Chin J Geophys 48(2):399–405 (in Chinese)
  • 27. Cheng J, Ma Z, Geng J, Wang H (2008) Double-square-root one-way wave equation prestack tau migration in heterogeneous media. Geophys Prospect 56(1):69–85. https://doi.org/10.1111/j.1365-2478.2007.00667.x
  • 28. Claerbout JF (1985) Imaging the Earth’s interior. Blackwell, Oxford
  • 29. Cohen JK (1997) Analytic study of the effective parameters for determination of the NMO velocity function in transversely isotropic media. Geophysics 62(6):1855–1866
  • 30. de Hoop MV, Le Rousseau JH, Wu R-S (2000) Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave Motion 31(1):43–70. https://doi.org/10.1016/S0165-2125(99)00026-8
  • 31. de Hoop MV, Le Rousseau JH, Biondi B (2003) Symplectic structure of wave-equation imaging: a path-integral approach based on the double-square-root equation. Geophys J Int 153(1):52–74. https://doi.org/10.1046/j.1365-246X.2003.01877.x
  • 32. Duchkov A, de Hoop MV (2009) Extended isochron rays in prestack depth migration. In 79th SEG annual international meeting. Expanded abstracts, pp 3610–3614
  • 33. Fomel S (2004) Theory of 3-D angle gathers in wave-equation imaging. In 74th SEG annual international meeting. Expanded abstracts, pp 1053–1056. https://doi.org/10.1190/1.1851067
  • 34. Frigo M, Steven GJ (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231
  • 35. Gazdag J, Sguazzero P (1984) Migration of seismic data by phase shift plus interpolation. Geophysics 49(2):124–131. https://doi.org/10.1190/1.1441643
  • 36. Gray SH, May WP (1994) Kirchhoff migration using eikonal equation traveltimes. Geophysics 59(5):810–817. https://doi.org/10.1190/1.1443639
  • 37. Hao Q, Stovas A, Alkhalifah T (2015) The offset-midpoint traveltime pyramid in 3D HTI media. Geophysics 80(1):T51–T62
  • 38. Hao Q, Stovas A, Alkhalifah T (2016) The offset-midpoint traveltime pyramid of P-waves in homogeneous orthorhombic media. Geophysics 81(5):C151–C162
  • 39. Herman J, Larner K (1995) Prestack migration error in transversely isotropic media. In 65th SEG annual international meeting. Expanded abstracts, pp 1204–1207
  • 40. Hu J, Wang H, Wang X (2015) Angle gathers from reverse time migration using analytic wavefield propagation and decomposition in the time domain. Geophysics 81(1):S1–S9
  • 41. Jin S, Wu R-S (1999) Common offset pseudo-screen depth migration. In 69th SEG annual international meeting. Expanded abstracts, pp 1516–1519. https://doi.org/10.1190/1.1820809
  • 42. Jin S, Mosher CC, Wu R-S (2002) Offset-domain pseudoscreen prestack depth migration. Geophysics 67(6):1895–1902. https://doi.org/10.1190/1.1527089
  • 43. Jin H, McMechan GA, Guan H (2014) Comparison of methods for extracting ADCIGs from RTM. Geophysics 79(3):S89–S103
  • 44. Ke B, Zhao B, Liu C, Fang Y (2004) Wave-equation datuming based on a single shot gather. In 74th SEG annual international meeting. Expanded abstracts, pp 2156–2159. https://doi.org/10.1190/1.1845210
  • 45. Li V, Guitton A, Tsvankin I, Alkhalifah T (2018) Image-domain wavefield tomography for VTI media. Geophysics 84(2):1MA-Z11
  • 46. Liu Z, Bleistein N (1995) Migration velocity analysis: theory and an iterative algorithm. Geophysics 60(1):142–153. https://doi.org/10.1190/1.1443741
  • 47. Liu S, Wang H, Yang Q (2014) Traveltime computation and imaging from rugged topography in 3D TTI media. J Geophys Eng 11(1):0150031
  • 48. Liu S, Wang H, Feng B (2015) The characteristic wave decomposition and imaging in VTI media. J Appl Geophys 115:51–58
  • 49. Liu S, Gu H, Tang Y, Han B, Wang H, Liu D (2018) Angle-domain common imaging gather extraction via Kirchhoff prestack depth migration based on a traveltime table in transversely isotropic media. J Geophys Eng 15(2):568–575
  • 50. Michell S, Shoshitaishvili E, Chergotis D, Sharp J, Etgen J (2006) Wide azimuth streamer imaging of Mad Dog; Have we solved the subsalt imaging problem? In 76th SEG annual international meeting. Expanded abstracts, pp 2905–2909. https://doi.org/10.1190/1.2370130
  • 51. Mulder WA, Plessix RE (2003) One-way and two-way wave-equation migration. In 73rd SEG annual international meeting. Expanded abstracts, pp 881–884. https://doi.org/10.1190/1.1818081
  • 52. Oh JW, Alkhalifah T (2018) Optimal full-waveform inversion strategy for marine data in azimuthally rotated elastic orthorhombic media. Geophysics 83(4):R307–R320
  • 53. Popovici AM (1996) Prestack migration by split-step DSR. Geophysics 61(5):1412–1416
  • 54. Reshef M (1991) Depth migration from irregular surfaces with depth extrapolation methods. Geophysics 56(1):119–122. https://doi.org/10.1190/1.1442947
  • 55. Sava P, Alkhalifah T (2013) Wide-azimuth angle gathers for anisotropic wave-equation migration. Geophys Prospect 61(1):75–91. https://doi.org/10.1111/j.1365-2478.2012.01024.x
  • 56. Sava PC, Fomel S (2003) Angle-domain common-image gathers by wavefield continuation methods. Geophysics 68(3):1065–1074. https://doi.org/10.1190/1.1581078
  • 57. Sava P, Fomel S (2005) Coordinate-independent angle-gathers or wave equation migration. In 75th SEG annual international meeting. Expanded abstracts, pp 2052–2055
  • 58. Sava P, Vlad I (2011) Wide azimuth angle gathers for wave equation migration. Geophysics 76(3):S131–S141
  • 59. Sava PC, Biondi B, Fomel S (2001) Amplitude-preserved common image gathers by wave-equation migration. In 71st SEG annual international meeting. Expanded abstracts, pp 296–299. https://doi.org/10.1190/1.1816598
  • 60. Song X, Fomel S (2011) Fourier finite-difference wave propagation. Geophysics 76(5):T123–T129. https://doi.org/10.1190/geo2010-0287.1
  • 61. Stoffa PL, Fokkema JT, de Luna Freire RM, Kessinger WP (1990) Split-step Fourier migration. Geophysics 55(4):410–421
  • 62. Sun H, Huang L, Fehler MC (2005) Globally optimized Fourier finite-difference migration in the offset domain. In 75th SEG annual international meeting. Expanded abstracts, pp 1858–1861. https://doi.org/10.1190/1.2148065
  • 63. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51(10):1954–1966. https://doi.org/10.1190/1.1442051
  • 64. Tsvankin I (2012) Seismic signatures and analysis of reflection data in anisotropic media. Society of Exploration Geophysicists, 3rd ed
  • 65. VerWest BJ, Lin D (2007) Modeling the impact of wide-azimuth acquisition on subsalt imaging. Geophysics 72(5):SM241–SM250. https://doi.org/10.1190/1.2736516
  • 66. Whitmore ND (1983) Iterative depth migration by backward time propagation. In 53rd SEG annual international meeting. Expanded abstracts, pp 382–385. https://doi.org/10.1190/1.1893867
  • 67. Wu R-S (1994) Wide-angle elastic wave one-way propagation in heterogeneous media and an elastic wave complex-screen method. J Geophys Res 99:751–766. https://doi.org/10.1029/93JB02518
  • 68. Wu R-S (1996) Synthetic seismograms in heterogeneous media by one-return approximation. Pure Appl Geophys 148:155–173
  • 69. Wu G, Liang K, Wang H (2007) High-order one-way generalized-screen propagation operator of qP-wave in VTI medium. Oil Geophys Prospect 42(6):640–650 (in Chinese)
  • 70. Wu C, Wang H, Zhou Y, Hu J (2019) Angle-domain common-image gathers in reverse-time migration by combining the Poynting vector with local-wavefield decomposition. Geophys Prospect 67(8):2035–2060
  • 71. Xu S, Zhang Y, Tang B (2011) 3D angle gathers from reverse time migration. Geophysics 76(2):S77–S92
  • 72. Yan R, Xie XB (2012) AVA analysis based on RTM angle domain common image gather. In 82nd SEG annual international meeting. Expanded abstracts, pp 1–6. https://doi.org/10.1190/segam2012-0521.1
  • 73. Yan L, Larry RL, Lawton DC (2004) Influence of seismic anisotropy on prestack depth migration. Geophysics 23(1):30–36
  • 74. Yilmaz O, Claerbout JF (1980) Prestack partial migration. Geophysics 45(12):1753–1779
  • 75. Yuan SY, Wang SX, Luo YN, Wei WW, Wang GC (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc9e2331-b9f9-4131-82d8-2848e15586a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.