Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concepts of renewable energy utilization, encouraging sustainability, and the scientific principles of environmental conservation have become among the most critical goals that researchers are currently focusing on. Concrete and asphalt solar collectors are considered important types of solar energy collectors because they offer both economic and structural advantages. This study aims to conduct a numerical simulation using COMSOL Multiphasic software to compare the thermal performance of three non-circular tubes cross-sections extending through the solar collectors and to compare them with the commonly used circular cross-section. The cross-sections tested include semicircular, elliptical, and trapezoidal, in addition to the circular shape with a constant hydraulic diameter of 21 mm and tested sections with slab dimensions (0.5 m length, 0.16 m width, 0.05 m thickness). The same boundary conditions were applied to all cases, with a heat flux applied from the top surface and insulated the other surfaces of the slab. The results showed that the semicircular and trapezoidal cross-sections were the most efficient in transferring heat to the working fluid. This study is unique in the choice of cross-sections and contributes to scientific research by introducing innovative and unconventional methods that can enhance the efficiency of thermal and save energy systems.
Wydawca
Rocznik
Tom
Strony
339--352
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Mechanical Department, College of Engineering, Mustansiriyah University, Baghdad- Iraq
autor
- Mechanical Department, College of Engineering, Mustansiriyah University, Baghdad- Iraq
Bibliografia
- 1. Abbaa, F.A., Alhamdo, M.H. (2021). Progress in Solar Energy and Engineering Systems. Journal Homepage: Http://Iieta.Org/Journals/Psees, 5(1), 17–25.
- 2. Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P. (2011). Introduction to heat transfer. John Wiley & Sons.
- 3. Chaurasia, P.B.L. (2000). Solar water heaters based on concrete collectors. Energy, 25(8), 703–716. https://doi.org/10.1016/S0360-5442(99)00091-2
- 4. Dezfooli, A.S., Nejad, F.M., Zakeri, H., Kazemifard, S. (2017). Solar pavement: A new emerging technology. Solar Energy, 149, 272–284. https://doi.org/10.1016/J.SOLENER.2017.04.016
- 5. Farzan, H., Zaim, E.H. (2021). Feasibility study on using asphalt pavements as heat absorbers and sensible heat storage materials in solar air heaters: An experimental study. Journal of Energy Storage, 44. https://doi.org/10.1016/j.est.2021.103383
- 6. Gholikhani, M., Roshani, H., Dessouky, S., Papagiannakis, A.T. (2020). A critical review of roadway energy harvesting technologies. In Applied Energy (Vol. 261). https://doi.org/10.1016/j. apenergy.2019.114388
- 7. Granqvist, C.G. (2004). Materials for Solar Energy. In C. J. Cleveland (Ed.), Encyclopedia of Energy (pp. 845–858). Elsevier. https://doi.org/https://doi.org/10.1016/B0-12-176480-X/00325-9
- 8. IEA International Energy Agency. (2023). global energy-related carbon dioxide emissions to net zero by 2050. https://www.iea.org/reports/net-zero-by-2050
- 9. Islam, R., Ali, M.H., Pratik, N.A., Lubaba, N., Miyara, A. (2023). Numerical analysis of a flat plate collector using different types of parallel tube geometry. AIP Advances, 13(10).
- 10. Jacimovic, B., Genic, S., Lelea, D. (2018). Calculation of the heat transfer coefficient for laminar flow in pipes in practical engineering applications. Heat Transfer Engineering, 39(20), 1790–1796.
- 11. Jebasingh, V.K., Divya Johns, J., Arunkumar, T. (2022). Assessment of circular and elliptical absorber tube in solar parabolic trough collector. International Journal of Ambient Energy, 43(1), 873–878.
- 12. Jiao, W., Sha, A., Liu, Z., Jiang, W., Hu, L., Qin, W. (2023). Analytic investigations of snow melting efficiency and temperature field of thermal conductive asphalt concrete combined with electrical-thermal system. Journal of Cleaner Production, 399, 136622.
- 13. Keste, A.A., Patil, S.R. (2012). Investigation of concrete solar collector: a review. IOSR J. Mech. Civ. Eng, 6, 26–29.
- 14. Lemos, J. M., Neves-Silva, R., & Igreja, J. M. (2014). Adaptive Control of Solar Energy Collector Systems.
- 15. Li, X., Wang, Y.M., Wu, Y. L., Wang, H.R., Chen, M., Sun, H.D., Fan, L. (2021). Properties and modification mechanism of asphalt with graphene as modifier. Construction and Building Materials, 272, 121919. https://doi.org/10.1016/J. CONBUILDMAT.2020.121919
- 16. Muhsin, N.M.B., Alhamdo, M.H. (2020). Study experiential and numerical for investigation the efficiency inside building structure. European Journal of Molecular \& Clinical Medicine, 7(06), 1917–1936.
- 17. Nanhe, V.B., Gorle, R.D. (2016). Performance Analysis of Flat Plate Solar Water Collector using Trapezoidal shape and Semi-circular Tubes: A Review. 2012–2015.
- 18. Nasir, D.S.N.M., Hughes, B.R., Calautit, J.K. (2017). Influence of urban form on the performance of road pavement solar collector system: Symmetrical and asymmetrical heights. Energy Conversion and Management, 149, 904–917. https://doi.org/10.1016/J.ENCONMAN.2017.03.081
- 19. O’Hegarty, R., Kinnane, O., McCormack, S. (2016). Parametric analysis of concrete solar collectors. Energy Procedia, 91, 954–962. https://doi.org/10.1016/j.egypro.2016.06.262
- 20. Rostami, S., Sepehrirad, M., Dezfulizadeh, A., Hussein, A.K., Shahsavar Goldanlou, A., Shadloo, M.S. (2020). Exergy optimization of a solar collector in flat plate shape equipped with elliptical pipes filled with turbulent nanofluid flow: a study for thermal management. Water, 12(8), 2294.
- 21. Shah, R.K. (1978). Laminar Flow Forced Convection in. Ducts, Supp. 1 of Advances in Heat Transfer, 153–195.
- 22. Sun, L. (2016). Distribution of the temperature field in a pavement structure. Structural Behavior of Asphalt Pavements, 61–177. https://doi.org/10.1016/ B978-0-12-849908-5.00002-X
- 23. Tahami, S.A., Gholikhani, M., Nasouri, R., Dessouky, S., Papagiannakis, A.T. (2019). Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Applied Energy, 238. https://doi.org/10.1016/j.apenergy.2019.01.152
- 24. Teleszewski, T.J. (2017). A numerical investigation of laminar forced convection in a solar collector with non-circular duct. E3S Web of Conferences, 22, 1–8. https://doi.org/10.1051/e3sconf/20172200177
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc9951dc-cfde-4b03-bd14-51db1cecdb47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.