PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Clay–rubber Mixtures for the Transportation Geotechnics—the Numerical Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
19th KKMGiIG
Języki publikacji
EN
Abstrakty
EN
The use of waste materials (including rubber) in industry is one of the most important issues in terms of environmental protection. One of such applications is the use of soil–rubber mixtures in backfills or lower layers of embankments or road structures. The numerical analyses of the behavior of a clay–rubber mixture layer built into a road embankment are presented in this article. An elastic-perfectly plastic model with a Coulomb–Mohr yield surface was used in the finite element analysis. The parameters of soil–rubber mixtures adopted for the analysis were estimated on the basis of triaxial tests: monotonic (UU—unconsolidated undrained, and CU—consolidated undrained) and cyclic (CU) performed with low frequency (f = 0,001 Hz). The triaxial tests were carried out on mixtures of kaolin (K) and red clay (RC) with the addition of 1–5 mm rubber granulate (G) in the amount of 5–25% by weight. Numerical analyses included a static plate load test (VSS) of a layer made of a rubber–soil mixture built into the embankment and testing the stability of embankments using the c–ϕ strength reduction procedure. The results of laboratory tests confirm the necessity of testing soil–rubber mixtures each time before their use in embankments. The observed overall decrease in shear strength and stiffness of the tested material is variable and depends on the type of soil and the content of rubber waste. Satisfactory results of the analysis were obtained, both in terms of the values of layer stiffness modules and slope safety factors, which allows for the conclusion of the possibility of using soil–rubber mixtures (with the recommended granulate addition up to 30% by weight) in the layers of road embankments and (depending on the road class) in the lower layers of the pavement structure.
Wydawca
Rocznik
Strony
370--381
Opis fizyczny
Bibliogr. 53 poz., rys., tab.
Twórcy
  • Katedra Geotechniki i Dróg, Wydział Budownictwa, Politechnika Śląska, ul. Akademicka 5, 44-100 Gliwice
  • Katedra Geotechniki i Dróg, Wydział Budownictwa, Politechnika Śląska, ul. Akademicka 5, 44-100 Gliwice
Bibliografia
  • [1] Akbarimehr, D., Aflaki, E. (2018). An Experimental Study on the Effect of Tire Powder on the Geotechnical Properties of Clay Soils. Civ. Eng. J., 4, 594.
  • [2] Akbulut, S., Arasan, S. and Kalkan, E. (2007). Modification of Clayey Soils using Scrap Tire Rubber and Synthetic Fibers. Appl. Clay Sci., 38, pp. 23–32.
  • [3] ASTM D2487-11 (2017). In Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: Philadelphia, PA, USA.
  • [4] Batog, A., Stilger-Szydło, E. (2018). Stability of road earth structures in the complex and complicated ground conditions. Studia Geotechnica et Mechanica, 40(4).
  • [5] Cała, M. (2007). Canvex and concave slope stability analyses with numerical methods. Archives of Mining Science, 52(1), pp. 75–89.
  • [6] Cetin, H., Fener, M. and Gunaydin, O. (2006). Geotechnical Properties of Tire-Cohesive Clayey Soil Mixtures as a Fill Material. Eng. Geol., 88, pp. 110–120.
  • [7] Commend, S., Kivell, S., Obrzud, R., Podleś, K. and Truty, A. (2020). Computational Geomechanics & Applications with ZSOIL.PC. Lausanne: Zace Services Ltd, Software Engineering, 2020.
  • [8] Das, C., Ghosh, A. (2020). Study on River Bed Material and Numerical Analysis of Stabilized Road Embankment on Soft Soil. In: Prashant, A., Sachan, A., Desai, C. (eds) Advances in Computer Methods and Geomechanics. Lecture Notes in Civil Engineering, , vol 55. Springer, Singapore.
  • [9] Das, T., Singh, B. (2012). Strength Behaviour of Cohesive Soil-Fly Ash-Waste Tyre Mixtures. In Proceedings of the SAITM Research Symposium on Engineering Advancements, University of Moratuwa, Malabe, Sri Lanka, 27–28 April 2012, pp. 35–38.
  • [10] Gomes Correia, A., Winter, M.G. and Puppala, A.J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation Geotechnics, 7, pp. 21–28.
  • [11] Griffiths, D.V., Lane, P.A. (1999). Slope stability analysis by finite elements, Geotechnique, 49, pp. 387–403.
  • [12] Gryczmański, M. (1995). Introduction to the description of elastic-plastic soil models. Committee of Civil and Water Engineering of the Polish Academy of Sciences, no 40, Warszawa. (in Polish)
  • [13] Gryczmański, M. (2009). State of the art in modelling of soil behaviour at small strains, ACEE Archit. Civ. Eng. Environ., 2(1), pp. 61–80.
  • [14] Head, K.H. (2006). Manual of Soil Laboratory Testing: Soil Classification and Compaction Test, 3rd ed.; Whittles Publishing: Scotland, UK, Volume 1.
  • [15] Holtz, W.G.; Gibbs, H.J. (1956). Engineering Properties of Expansive Clays. Trans. Am. Soc. Civ. Eng., 121, 641–663.
  • [16] Indraratna, B., Rujikiatkamjorn, C., Tawk, M. and Heitor, A. (2019). Compaction, Degradation and Deformation Characteristics of an Energy Absorbing Matrix. Transp. Geotech., 19, pp. 74–83.
  • [17] Jastrzębska, M. (2010). Investigations of the Behaviour of Cohesive Soils Subject to Cyclic Loads in the Area of Small Deformations, Monograph, D.S., Ed., Silesian University of Technology Publishers: Gliwice, Poland.
  • [18] Jastrzębska, M. (2019). Strength Characteristics of Clay-Rubber Waste Mixtures in UU Triaxial Tests. Geosciences, 9(8):352.
  • [19] Jastrzębska, M. (2010). The External and Internal Measurement Impact on Shear Modulus Distribution within Cyclic Small Strains in Triaxal Studies into Cohesive Soil. In Proceedings of the EPJ Web of Conferences, Poitier, France, 10 June 2010, Volume 6, p. 22014.
  • [20] Jastrzębska, M. (2010). The Influence of Overconsolidation Ratio on the “Gs-e1” Dependence for Cyclic Loading of Cohesive Soils in the Range of Small Strains. Studia Geotechnica et Mechanica, 32, pp. 17–28.
  • [21] Jastrzębska, M. (2010). The Influence of Selected Parameters of Cyclic Process on Cohesive Soils Shear Characteristics at Small Strains. Arch. Civ. Eng., 56, pp. 89–107.
  • [22] Jastrzębska, M., Kazimierowicz-Frankowska, K., Chiaro, G. and Rybak, J. (2023). New Frontiers in Sustainable Geotechnics. Applied Sciences., 13(1):562.
  • [23] Jastrzębska, M., Łupieżowiec, M. (2018). Analysis of the causes and effects of landslides in the Carpathian Flysh in the area of Milówka commune and evaluation of the methods of their prevention, Annal. Warsaw Univ. Life Sci. – SGGW, Land Reclamation, 50(2), pp. 195–211.
  • [24] Jastrzębska, M, Tokarz, K. (2021). Strength Characteristics of Clay–Rubber Waste Mixtures in Low-Frequency Cyclic Triaxial Tests. Minerals. 2021, 11(3):315.
  • [25] Kalantari, B. (2012). Foundations on Expansive Soils: A Review. Res. J. Appl. Sci. Eng. Technol., 4, pp. 3231–3237.
  • [26] Kalkan, E. (2013). Preparation of Scrap Tire Rubber Fiber–Silica Fume Mixtures for Modification of Clayey Soils. Appl. Clay Sci., 80–81, pp. 117–125.
  • [27] Kliszczewicz, B., Kowalska, M. (2020). Numerical Study of the Use of Tyre-Derived-Aggregate (TDA) as the Backfill Above Flexible PVC Pipeline. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Prague, Czech Republic, 15–19 June 2020, Vol. 960, pp. 32–44.
  • [28] Kowalska, M., Chmielewski, M. (2017). Mechanical Parameters of Rubber-Sand Mixtures for Numerical Analysis of a Road Embankment. In Proceedings of the IOP Conference Series, Materials Science and Engineering, Beijing, China, 24–27 October 2017, Vol. 245:052003.
  • [29] Kowalska, M., Jastrzębska, M. (2017). Swelling of Cohesive Soil with Rubber Granulate. In: Analizy i Doświadczenia w Geoinżynierii, Bzówka, J., Łupieżowiec, M., Eds., Politechnika Śląska: Gliwice, Poland, Vol. 651, pp. 261–270.
  • [30] Łupieżowiec, M. (2013). The application of c–φ reduction method to estimate the bearing capacity of subsoil. ACEE Architecture Civil Engineering Environment, 6(4), pp. 35–43.
  • [31] Łupieżowiec, M., Rybak, J., Różański, Z., Dobrzycki, P., Jędrzejczyk, W. (2022). Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies, 15(16).
  • [32] Mickovski, S.B. (2021). Sustainable Geotechnics – Theory, Practice, and Applications. Sustainability, 13(9):5286.
  • [33] PKN-CEN ISO/TS 17892-8:2009 (2009). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 8: Unconsolidated Undrained Triaxial Test, PKN: Warszawa, Poland.
  • [34] PN-EN ISO 14688-2:2006 (2006). In Geotechnical Investigation and Testing – Determination and Classification of Soils – Part 2: Classification Rules, PKN: Warszawa, Poland.
  • [35] PN-EN ISO 17892-5:2017-06 (2017). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 5: Incremental Loading Oedometer Test; PKN: Warszawa, Poland.
  • [36] PN-EN ISO 17892-9:2018-05 (2020). In Geotechnical Investigation and Testing – Laboratory Testing of Soil – Part 9: Consolidated Triaxial Compression Test on Water Saturated, PKN: Warszawa, Poland.
  • [37] PN-EN 1997-1:2008 (Eurokode 7) (2008). Geotechnical design – Part 1: General principles. PKN: Warszawa, Poland.
  • [38] PN-S-02205:1998 (1998). Car roads, Spadeworks, Research and Requirements. PKN: Warszawa, Poland.
  • [39] Regulation (1999). Regulation of the Minister of Transport and Maritime Economy of March 2, 1999 on the technical conditions to be met by public roads and their location, Journal of Laws of 2016, pos. 124. (in Polish)
  • [40] Salunkhe, D.P., Bartakke, R.N., Chvan, G., Kothavale, P.R. and Digvijay P. (2017). An overview on methods for slope stability analysis. International Journal of Engineering Research & Technology (IJERT), 6(3), pp. 528–535.
  • [41] Sloan, S.W. (2013). Geotechnical stability analysis. Geotechnique, 63(7), pp. 531–571.
  • [42] Soltani, A., Deng, A., Taheri, A., Mirzababaei, M. and Vanapalli, S.K. (2019). Deng Swell–Shrink Behavior of Rubberized Expansive Clays During Alternate Wetting and Drying. Minerals, 9, 224.
  • [43] Soltani, A., Deng, A., Taheri, A. and Sridharan, A. (2019). Swell–Shrink–Consolidation Behavior of Rubber–Reinforced Expansive Soils. Geotech. Test. J., 42, pp. 761–788.
  • [44] Ślusarek, J., Łupieżowiec, M. (2020). Analysis of the influence of soil moisture on the stability of a building based on a slope. Engineering Failure Analyses, 113:104534.
  • [45] Tafti, M.F., Emadi, M.Z. (2016). Impact of Using Recycled Tire Fibers on the Mechanical Properties of Clayey and Sandy Soils. Electron. J. Geotech. Eng., 21, pp.7113–7125.
  • [46] Tajdini, M., Nabizadeh, A., Taherkhani, H. and Zartaj, H. (2016). Effect of Added Waste Rubber on the Properties and Failure Mode of Kaolinite Clay. Int. J. Civ. Eng., 15, pp. 949–958.
  • [47] Urbański, A., Grodecki, M. (2019). Protection of a building against landslide. A case study and FEM simulations. Bulletin of the Polish Academy of Sciences-Technical Sciences, 67(3), pp. 657–664.
  • [48] Wasil, M., Zabielska-Adamska, K. (2022). Tensile Strength of Class F Fly Ash and Fly Ash with Bentonite Addition as a Material for Earth Structures. Materials,, 15(8):2887.
  • [49] Wysokiński, L. (2011). Evaluation of the stability of slopes and slopes. Security selection rules - instruction. Warszawa. (in Polish)
  • [50] Yadav, J.S., Tiwari, S.K. (2019). The Impact of End-of-Life Tires on the Mechanical Properties of Fine-Grained Soil: A Review. Environ. Dev. Sustain., 21, pp. 485–568.
  • [51] Zabielska-Adamska, K. (2020). Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment. Sustainability, 12(1):39.
  • [52] Zabielska-Adamska, K., Dobrzycki, P. and Wasil, M. (2023). Estimation of Stiffness of Non-Cohesive Soil in Natural State and Improved by Fiber and/or Cement Addition under Different Load Conditions. Materials, 16(1):417.
  • [53] Zheng, Y., Tang, X., Zhao, S., Deng, C. and Lei, W. (2009). Strength reduction and step-loading finite element approaches in geotechnical engineering, J. Rock Mech. Geotech. Eng., 1(1), pp. 21–30.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc8d6c2c-8113-462c-95d2-aed3b4bee71f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.