PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of floating objects based on hydroacoustic and hydrodynamic pressure measurements in the coastal zone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of coastal infrastructure and related maritime transport necessitatesthe intensification of vessel traffic monitoring. Navigation systems used in this research are traditionally based on the information transmitted by radio waves. Marine traffic safety requires constant supervision carried out by dedicated systems, the operation of which may be limitedby difficult environmental conditions. The possibilities of supporting navigation systems with underwater observation systems are explored here. The research was carried out using an underwater measurement system. Local disturbances of the hydroacoustic and hydrodynamic field from the moving vessels were analysed. The potential for identifying a moving vessel, for example for offshore infrastructure security purposes, is demonstrated.
Rocznik
Tom
Strony
168--175
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Polish Naval Acedemy, J. Śmidowicza 69, 81-127 Gdynia, Poland
  • Polish Naval Acedemy, J. Śmidowicza 69, 81-127 Gdynia, Poland
Bibliografia
  • 1. Kuşku H., Yiğit M., Ergün S., YiğitÜ., Taylor N. (2018): Acoustic Noise Pollution from Marine Industrial Activities: Exposure and Impacts. Aquatic Research, 1(4), 148–161, DOI: 10.3153/AR18017.
  • 2. Tournadre J. (2014): Anthropogenic pressure on the open ocean: The growth of vessel traffic revealed by altimeter data analysis. Geophysical Research Letters,41(22),7924–7932, DOI: https://doi.org/10.1002/2014GL061786.
  • 3. SOLAS (2000): Safety of Life at Sea, Chapter V, Regulation 19, 470–473.
  • 4. Mazzarella F., Vespe M.,Alessandrini A., Tarchi D., Aulicino G., Vollero A.(2017): A novel anomaly detection approach to identify intentional AIS on-off switching. Expert Systems with Applications, 78, 110–123, DOI: 10.1016/j.eswa.2017.02.011.
  • 5. Riveiro M., Falkman G., Ziemke T.(2008): Improving maritime anomaly detection and situation awareness through interactive visualization. 11th International Conference on Information Fusion, Cologne, 1–8, IEEE Xplore.
  • 6. Häkkien J. M., Posti A. I. (2013): Overview of Maritime Accidents Involving Chemicals Worldwide in the Baltic Sea. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.),15–25, CRC Press, DOI: 10.12716/1001.08.02.16.
  • 7. Hassanzadeh M. A. (2013): Port Safety; Requirements & Economic Outcomes. In: Marine Transport & Shipping – Marine Navigation and Safety of Sea Transportation, Weintrit A. & Neumann T. (Eds.), 117–121, CRC Press.
  • 8. Marcjan K., Gucma L. (2015): A concept of a vessel domain for the use of navigational safety assessment. Journal of KONBiN, 33(1), 19–28,DOI: https://doi.org/10.1515/jok-2015-0002.
  • 9. Parnell K. E., Kofoed-Hansen H. (2001): Wakes from largehigh-speed ferries in confined coastal waters: Management approaches with examples from New Zealand and Denmark. Coastal Management, 29(3), 217–237, DOI:10.1080/08920750152102044.
  • 10. Baztan J., Chouinard O., Jorgensen B., Tett P., Vanderlinden J. P., Vasseur L. (2015): Coastal Zones, Solutions for the 21st Century. Elsevier.
  • 11. Haelters J., Norro A., Jacques Th. (2009): Underwater noise emission during the Phase I construction of the C-Power wind farm and baseline for the Belwind wind farm. In: Offshore wind farms in the Belgian part of the North Sea: State of the art after two years of environmental monitoring, Royal Belgian Institute for Natural Sciences, Management Unit of the North Sea Mathematical Models, Degraer, S.; Brabant, R. (Eds.), pp. 17–37.
  • 12. Kozaczka E., Grelowska G. (2018): Propagation of vesselgenerated noise in a shallow sea. Polish Maritime Research, 25(2), 37–46, DOI: 10.2478/pomr-2018-0052.
  • 13. Kozaczka E., Grelowska G. (2017): Theoretical model of acoustic wave propagation in shallow water. Polish Maritime Research, 24(2), 48–55, DOI: 10.1515/pomr-2017-0049.
  • 14. Faltinsen O. M. (2005): Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.
  • 15. Islam H., GuedesSoares C. (2018): Estimation of hydrodynamic derivatives of a container vessel using PMM simulation in OpenFOAM. Ocean Engineering,164, 414–425, DOI: https://doi.org/10.1016/j.oceaneng.2018.06.063.
  • 16. Altomare C., Crespo A. J. C., Dominguez J. M., Gómez- Gesteira M., Suzuki T.,Verwaest T.(2015): Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1–12, DOI: https://doi.org/10.1016/j.coastaleng.2014.11.001.
  • 17. Higuera P., Lara J. L., Losada I. J. (2013): Simulating coastal engineering processes with OpenFOAM. Coastal Engineering, 71, 119–134, DOI: 10.1016/j.coastaleng.2012.06.002.
  • 18. Carlton J. S., Vlasić D. (2005): Ship vibration and noise: Some topical aspects. Lloyd’s Technical Papers, 1st International Ship Noise and Vibration Conference: London, June 20–21, 2005, Lloyd’s Register Technical Papers.
  • 19. Gloza I., Malinowski S. J. (2002): Identification of the vesselsunderwater noise sources in the coastal region. Hydroacoustics, 5, 9–16.
  • 20. Gloza I., Buszman K. (2014): Sound intensity distribution as an underwater acoustic investigation process. Hydroacoustics, 17, 57–62.
  • 21. Park I. R. (2015): Numerical analysis of flow around the hull and the propeller of a vessel advancing in shallow water. Journal of Computational Fluids Engineering, 20(4), 93–101, DOI: 10.6112/kscfe.2015.20.4.093.
  • 22. Koronowicz T., Krzemianowski Z. (2007): Investigations of the influence of screw propeller operation on water flow around stern part of vessel hull. Polish Maritime Research,14(1), 3–8, DOI: 10.2478/v10012-007-0001-5.
  • 23. Bertram V. (2012): Practical vessel hydrodynamics, 2nd Edition, Elsevier.
  • 24. Gloza I., Buszman K. (2011): The multi-influence passive module for underwater environment monitoring. Hydroacoustics, 14, 47–54.
  • 25. Buszman K. (2013): Examination of acoustic wave propagation in real conditions. Hydroacoustics, 16, 11–18.
  • 26. Figurski M., Nykiel G. (2018): Satellite geodesy – Polish COSPAR Report 2018. Space Research in Poland Report to Committee on Space Research, 3–91.
  • 27. Makar A. (2018): Dynamic tests of ASG-EUPOS receiver in the hydrographic application, 18th International Multidisciplinary Scientific GeoConferenceSGEM 2018, Albena, Bulgaria, 2018, DOI: 10.5593/sgem2018/2.2/S09.094.
  • 28. Vujović I., Kuzmanić I. (2018): Investigation of weather conditions’ influence to the maritime zone surveillance – Ground truth generation. 21st International Research/ Expert Conference on Trends in the Development of Machinery and Associated Technology TMT,Karlovy Vary, Czech Republic, 2018.
  • 29. Massel S. R. (1989): Hydrodynamics of Coastal Zones, 48, Elsevier, DOI: https://doi.org/10.1017/S0022112090222149.
  • 30. Tan W.Y. (1992): Mathematical theory and numerical solution for a two-dimensional system of shallow-water equations. Shallow Water Hydrodynamics, 55, Elsevier.
  • 31. Ferretti G., Barani S., Scafidi D., Capello M., Besio G. (2018): Near real-time monitoring of significant sea wave height through microseism recordings: An application in the Ligurian Sea (Italy). Ocean & Coastal Management, 165, 185–194,DOI:10.1016/j.ocecoaman.2018.08.023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc8b09e3-34ff-4890-a1c4-1b9036a19f0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.