Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Oxidative degradation of a model environmental pollutant, p-Aminophenol (PAP), in aqueous solution has been investigated in an environmentally friendly advanced oxidation Fenton process. Effects of various operating parameters such as pH of solutions, dosage of hydrogen peroxide and ferrous ions, initial PAP concentration and temperature on the degradation of PAP have been studied using a batch stirred ceil. Degradation kinetics for this pollutant was also investigated to determine the apparent rate constants (min-1)- The optimum conditions for the degradation of PAP solution (200-500 mg/dm3) were found to be pH = 3.0, 2400 mg H2O2dm, 300 mg Fe2+/dm3, 30°C. Under the optimum conditions, the degradation efficiency of PAP was 75% after 50 min of reaction. It was observed that process parameters play a major role in the overall degradation process.
Czasopismo
Rocznik
Tom
Strony
255--267
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Bibliografia
- [1] ESPLUGAS S., GIMENEZ J., CONTRERAS S., PASCUAL S., RODRIGUEZ M., Comparison of different advanced oxidation processes for phenol degradation, Water Res., 2002, 36 (4), 1034.
- [2] CHATTERJEE D., DASGUPTA S., Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol. C, 2005, 6 (2–3), 186.
- [3] JARDIM W.F., MARAES S.G., TOKIYAMO M.M.K., Photocatalytic degradation of aromatic chlorinated compounds using TiO2.: Toxicity of intermediates, Water Res., 1997, 31 (7), 1728.
- [4] APLIN R., WAITE T., Comparison of three advanced oxidation processes for degradation of textile dyes, Water Sci. Technol., 2000, 42 (5–6), 345.
- [5] KAVITHA V., PALANIVELU K., The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere, 2004, 55 (9), 1235.
- [6] KANG Y.W., HWANG K.Y., Effects of reaction conditions on the oxidation efficiency in the Fenton process, Water Res., 2000, 34 (10), 2786.
- [7] KAVITHA V., PALANIVELU K., Degradation of nitrophenols by Fenton and photo-Fenton processes, J. Photochem. Photobiol. A, 2005, 170 (1), 83.
- [8] YINGXUN D., MINGHUA Z., LECHENG L., Role of the intermediates in the degradation of phenolic compounds by Fenton-like process, J. Hazard. Mater., 2006, 136 (3), 859.
- [9] LEGRINI O., OLIVEROS E., BRAUN A.M., Photochemical processes for water treatment, Chem. Rev., 1993, 93 (2), 671.
- [10] MALATO S., BLANCO J., VIDAL A., RICHTER C., Photocatalysis with solar energy at a pilot-plant scale. An overview, Appl. Catal. B, 2002, 37 (1), 1.
- [11] NEYENS R., BAEYENS J., A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 2003, 98 (1–3), 33.
- [12] GRIGOROPOULOU H., PHILIPPOPOULOS C., Homogeneous oxidation of phenols in aqueous solution with hydrogen peroxide and ferric ions, Water Sci. Technol., 1997, 36 (2–3), 151.
- [13] MA Y.S., HUANG S.T., LIN J.G., Degradation of 4-nitrophenol using the Fenton process, Water Sci. Technol., 2000, 42 (3–4), 155.
- [14] GOI A., TRAPIDO M., Hydrogen peroxide photolysis, Fenton reagent and photo-Fenton for the degradation of nitrophenols. A comparative study, Chemosphere, 2002, 46 (6), 913.
- [15] METRIC S., KAPTAN, D., OLMEZ, T., Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process, Chemosphere, 2004, 54 (3), 435.
- [16] YUAN S., LU X., Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation, J. Hazard. Mater. B, 2005, 118 (1–3), 85.
- [17] TANTAK N.P., CHAUDHARI S., Degradation of azo dyes by sequential Fenton’s oxidation and aerobic biological treatment, J. Hazard. Mater. B, 2006, 136 (3), 698.
- [18] NEZAMZADEH-EJHIEH A., AMIRI M., CuO supported Clinoptilolite towards solar photocatalytic degradation of p-aminophenol, Powder Technol., 2013, 235, 279.
- [19] RATIU C., MANEA F., LAZAU C., GROZESCU I., RADOVAN C., SCHOONMAN J., Electrochemical oxidation of p-aminophenol from water with boron-doped diamond anodes and assisted photocatalytically by TiO2-supported zeolite, Desalination, 2010, 260 (1–3), 51.
- [20] RATIU C., FLORICA M., LAZAU C., ORHA C., BURTICA G., GROZESCU I., SCHOONMAN J., Photocatalytically-assisted electrochemical degradation of p-aminophenol in aqueous solutions using zeolite-supported TiO2 catalyst, Chem. Pap., 2011, 65 (3), 289.
- [21] BADAWY M.I., GHALY M.Y., GAD-ALLAH T.A., Advanced oxidation processes for the removal of organophosphorus pesticides from wastewaters, Desalination, 2006, 194 (1–3), 166.
- [22] KWON B.G., LEE D.S., KANG N., YOON J., Characteristics of p-chlorophenol oxidation by Fenton’s reagent, Water Res., 1999, 33 (9), 2110.
- [23] LUCAS M.S., PERES J.A., Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation, Dye Pigm., 2006, 71 (3), 236.
- [24] GHALY M.Y., HARTEL G., MAYER R., HASENEDERK R., Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study, Waste Manage., 2001, 21 (1), 41.
- [25] YANG M., HU J., ITO K., Characteristics of Fe2+/H2O2/UV oxidation process, Environ. Technol., 1998, 19 (2), 183.
- [26] DUTTA K., MUKHOPADHYAY S., BHATTACHARJEE S., CHAUDHURI B., Chemical oxidation of methylene blue using a Fenton-like reaction, J. Hazard. Mater., 2001, 84 (1), 57.
- [27] GUEDES A.M.F.M., MADERIA L.M.P., BOAVENTURA R.A.R., COSTA C.A.V., Fenton oxidation of cork cooking wastewater – overall kinetic analysis, Water Res., 2003, 37 (13), 3061.
- [28] CATRINESCU C., TEODOSIU C., MACOVEANU M., MIEHE-BRENDLE J., DRED R.L., Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite, Water Res., 2003, 37 (5), 1154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc8a41be-116e-428f-bd2b-d4ece138ebeb