PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation and Fuzzy Based Prediction of Titanium Alloy Performance During Drilling Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, titanium and its alloys have been widely used in industry. Titanium alloys are difficult to machine due to high tool wear, cutting temperature, and edge formation. Thus, this analysis predicts how machining parameters, particularly drilling parameters, affect titanium work piece integrity. This study used Taguchi and fuzzy control software to calculate the effects of cutting parameters and drill tip angle on surface roughness maximal temperature in titanium alloy workpieces during dry drilling. Three 10 mm cutting tools have 106°, 118°, and 130° tip angles. Cutting tools are made of high-speed steel. The work piece model is a parallelogram with 100mm width, 150mm length, and 30mm thickness. Cutting settings include three spindle speeds. (500, 1000, and 1500) rpm with 0.1, 0.2, and 0.3 mm/rev feed rates. All simulations have the same hole depth (4 mm). We also estimated and discussed the rate of temperature change due to cutting settings. This prediction is used to diagnose and improve drilling, increase tool life, and safeguard the work piece. This reduces titanium drilling costs and effort. The machining model's work piece temperature is influenced by spindle speed and tool tip angle, but feed rate has no effect. Drillers can optimise drilling performance and obtain desired results including efficient penetration rates, shortened drilling time, and reduced equipment failure by regulating these parameters. Fuzzy Logic predicts drilling parameters on Titanium workpieces with encouraging results.
Twórcy
  • Department of Mechatronics Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Hartman, A.D., Gerdemann S.J., Hansen J.S. Producing lower-cost titanium for automotive applications. 50 (1998): 16-19.
  • 2. Bruni S., et al. Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in culured human umbilical vein endothelial cells. Acta biomaterialia 1.2 (2005): 223-234.
  • 3. Arrazola P-J., et al. Machinability of titanium alloys (Ti6Al4V and Ti555. 3). Journal of materials processing technology 209.5 (2009): 2223-2230.
  • 4. Miller S.F., P.J. Blau, A.J. Shih. Tool wear in friction drilling. International Journal of Machine Tools and Manufacture 47.10 (2007): 1636-1645.
  • 5. Sakurai K., et al. Drilling of Ti-6Al-4V alloy. Keikinzoku 42.7 (1992): 389-394.
  • 6. Sakurai K., Adachi K., Ogawa K. Low frequency vibratory drilling of Ti-6Al-4V alloy. Keikinzoku 42.11 (1992): 633-637.
  • 7. Sakurai K., et al. Intermittently decelerated feed drilling of Ti-6% Al-4% V alloy. Keikinzoku 46.3 (1996): 138-143.
  • 8. Arai M. Effects of high pressure supply of coolant in drilling of titanium alloy. Journal of Japan Institute of Light Metals 47.3 (1997): 139-144.
  • 9. Dornfeld D.A., et al. Drilling burr formation in titanium alloy, Ti-6AI-4V. CIRP annals 48.1 (1999): 73-76.
  • 10. Cantero J.L., et al. Dry drilling of alloy Ti–6Al– 4V. International Journal of Machine Tools and Manufacture 45.11 (2005): 1246-1255.
  • 11. Li Rui, Parag Hegde, Shih A.J. High throughput drilling of titanium alloys. International Journal of Machine Tools and Manufacture 47.1 (2007): 63-74.
  • 12. Hanif M.I., et al. Optimization of facing process by indigenously developed force dynamometer. The International Journal of Advanced Manufacturing Technology 100 (2019): 1893-1905.
  • 13. Vankanti V.K. and Ganta V. Optimization of proces parameters in drilling of GFRP composite using Taguchi method. Journal of Materials Research and Technology 3.1 (2014): 35-41.
  • 14. Anand G., et al. Investigation of drilling parameters on hybrid polymer composites using grey relational analysis, regression, fuzzy logic, and ANN models. Journal of the Brazilian Society of Mechanical Sciences and Engineering 40 (2018): 1-20.
  • 15. Aamir M., et al. Fuzzy logic approach for investigation of microstructure and mechanical properties of Sn96. 5-Ag3. 0-Cu0. 5 lead free solder alloy. Soldering & Surface Mount Technology 29.4 (2017): 191-198.
  • 16. Kuar A.S., et al. Optimization of Nd: YAG la- ser parameters for microdrilling of alumina with multiquality characteristics via grey–Taguchi method. Materials and manufacturing processes 27.3 (2012): 329-336.
  • 17. Goyal T., Walia R.S., Sidhu T.S. Study of coating thickness of cold spray process using Taguchi method. Materials and Manufacturing Processes 27.2 (2012): 185-192.
  • 18. Aamir M., et al. Optimization and modeling of process parameters in multi-hole simultaneous drilling using taguchi method and fuzzy logic approach. Materials 13.3 (2020): 680.
  • 19. Ramesh S., Karunamoorthy L., Palanikumar K. Fuzzy modeling and analysis of machining param- eters in machining titanium alloy. Materials and Manufacturing Processes 23.4 (2008): 439-447.
  • 20. Hashmi K., Graham I.D., and Mills B. Fuzzy logic based data selection for the drilling process. Journal of Materials Processing Technology 108.1 (2000): 55-61.
  • 21. Zeilmann R.P. and Weingaertner W.L. Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant. Journal of Materials Processing Technology 179.1-3 (2006): 124-127.
  • 22. Li Rui and Shih A.J. Tool temperature in titanium drilling. (2007): 740-749.
  • 23. Wu Jian and Rong Di Han. An analytical evaluation of drilling temperature. Key Engineering Materials 407 (2009): 400-403.
  • 24. Nedic B. and Erić M. Cutting temperature measurement and material machinability. (2014).
  • 25. Su Y., Chen D.D., Gong L. 3D Finite element analysis of drilling of Ti-6Al-4V Alloy. International Conference on Computer Information Systems and Industrial Applications. Atlantis press, 2015.
  • 26. Patne H.S., et al. Modeling of temperature distribution in drilling of titanium. International Journal of Mechanical Sciences 133 (2017): 598-610.
  • 27. Shunmugesh K., and Panneerselvam K. Grey Relational Analysis Based Optimization Of Multiple Responses in Drilling Of Carbon Fiber-Epoxy Composites. Materials Today: Proceedings 4.2 (2017): 2861-2870
  • 28. Suman C., Mahapatra S.S., Abhishek K. Simulation and optimization of machining parameters in drilling of titanium alloys. Simulation Modelling Practice and Theory 62 (2016): 31-48.
  • 29. Gurmeet S., et al. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. Journal of the mechanical behavior of biomedical materi-als 62 (2016): 355-365.
  • 30. Priyadarshini, M., et al. Multi characteristics optimization of laser drilling process parameter using grey fuzzy reasoning method. Materials Today: Proceedings 2.4-5 (2015): 1518-1532
  • 31. Tej P., Patra K., Dyakonov A.A. Modeling cutting force in micro-milling of ti-6al-4 v titanium alloy. Procedia Engineering 129 (2015): 134-139.
  • 32. Yang, WH P., and Y.S. Tarng. Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of materials processing technology 84.1-3 (1998): 122-129.
  • 33. Mustafa K., Kaynak Y., Bagci E. Evaluation of drilled hole quality in Al 2024 alloy. The International Journal of Advanced Manufacturing Technology 37 (2008): 1051-1060.
  • 34. Abderrahmen Z., et al. Prediction of machining performance using RSM and ANN models in hard turning of martensitic stainless steel AISI 420. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233.13 (2019): 4439-4462.
  • 35. Mustafa K., Bagci E., Kaynak Y. Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. The International Journal of Advanced Manufacturing Technology 40 (2009): 458-469.
  • 36. Vinayagamoorthy R., et al. A central composite design based fuzzy logic for optimization of drilling parameters on natural fiber reinforced composite. Journal of Mechanical Science and Technology 32 (2018): 2011-2020.
  • 37. Pedrycz W. Fuzzy equalization in the construction of fuzzy sets. Fuzzy sets and systems 119.2 (2001): 329-335.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc883beb-c0e3-47ef-ba5c-5215ccc934a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.