PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption efficiency of pentafluorobenzene on ionic liquids-based silicas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption of pentafl uorobenzene on nine ionic liquid-based silicas was investigated using solid phase extraction. The effects of several variables such as the type of ionic liquid groups, adsorption time, temperatures and water ratio in the solution system were experimentally evaluated. The imidazole-chloride ionic liquid group based silica exhibited the highest adsorption efficiency under the optimized conditions of 5 min adsorption at 30°C in water/methanol (30:70, vol%) solution. In addition, the effects of pH, as well as type and concentrations of chloride salts were investigated. At pH values other than neutral and high salt concentration, the adsorption efficiency was reduced. Finally, the relative standard deviation of less than 5.8% over a 5-day period showed a high precision for the nine tested sorbents.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
autor
  • College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei, 434023 China
Bibliografia
  • 1. Li, X., Shan, G., Liu, H. & Wang, Z. (2009). Determination of lgKOW and QSPR study on some fluorobenzene derivatives. Chin. J. Struct. Chem. 28, 1236–1241. DOI: 10.14102/j.cnki.0254-5861.2009.10.011.
  • 2. Boyaala, R., Touzani, R., Guerchais, V., Soule, J. & Doucet, H. (2017). Synthesis of 2-(fluorinated aryl)pyridine derivatives via palladium-catalyzed C-H bond arylation of fluorobenzenes using 2-halopyridines as aryl sources. Tetrahedron Lett. 58, 3205–3208. DOI: 10.1016/j.tetlet.2017.06.075.
  • 3. Zhao, H., Zhang, C., Ge, Z. & Wang, Z. (2010). Toxicity (-lgEC50) measurement of the fluorobenzene derivants against Vibrio Qinghaiensis (Q67) and their 2D, 3D-QSAR study. Chin. J. Struct. Chem. 29, 1467–1476. DOI:10.14102/j.cnki.0254-5861.2010. 10.023.
  • 4. Carvalho, M.F., Alves, C.C.T., Ferreira, M.I.M., De Marco, P. & Castro, P.M.L. (2002). Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl. Environ. Microbiol. 68, 102–105. DOI: 10.1128/AEM.68.1.102-105.2002.
  • 5. Carvalho, M.F., Ferreira, J.R., Pacheco, C.C., De Marco, P. & Castro, P.M.L. (2005). Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ. Microbiol. 7, 294–298. DOI: 10.1111/j.1462-2920.2004.00714.x
  • 6. Huang, C., Jiang, J., Mebel, A.M., Lee, Y.T. & Ni, C. (2003). Photodissociation dynamics of fluorobenzene. J. Am. Chem. Soc. 125, 9814–9820. DOI: 10.1021/ja030185k.
  • 7. Budarin, V.L., Clark, J.H., Hale, S. E., Tavener, S.J., Mueller, K.T. & Washton, N.M. (2007). NMR and IR study of fluorobenzene and hexa fluorobenzene adsorbed on alumina. Langmuir, 23, 5412–5418. DOI: 10.1021/la062900k.
  • 8. Carvalho, M.F., Duque, A.F., Gonçalves, I.C. & Castro, P.M.L. (2007). Adsorption of fluorobenzene onto granular activated carbon: Isotherm and bioavailability studies. Bioresour. Technol. 98, 3424–3430. DOI: 10.1016/j.biortech.
  • 9. Zotti, L.A., Teobaldi, G., Palotás, K., Ji, W., Gao, H. & Hofer, W.A. (2008). Adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110): a computational study. J. Comput. Chem. 29, 1589–1595. DOI: 10.1002/jcc.20916.
  • 10. Parida, S.K. & Mishra, B.K. (1996). Adsorption of styryl pyridinium dyes on silica gel. J. Colloid Interface Sci. 182, 473–477. DOI: org/10.1006/jcis.1996.0490.
  • 11. Priada, S.K., Dash, S., Patel, S. & Mishra, B.K. (2006). Adsorption of organic molecules on silica surface. Adv. Colloid Interface Sci. 121, 77–110. DOI: org/10.1016/j.cis.2006.05.028.
  • 12. Parida, S.K. & Mishra, B.K. (1998). Adsorption of styryl pyridinium dyes on polyethylene glycol-treated silica. Colloids Surf. A 134, 249–255. DOI: org/10.1016/S0927-7757(97) 00114-3.
  • 13. Vrancken, K.C., Coster, L.D., Voort, P.V.D., Grobet, P.J. & Vansant, E.F. (1995). The role of silanols in the modifications of silica gel with aminosilanes. J. Colloid Interface Sci. 170, 71–77. DOI: org/10.1006/jcis.1995.1073
  • 14. Vrancken, K.C., Possemiers, K., Voort, P.V.D. & Vansant, E.F. (1995). Surface modification of silica gels with aminoorganosilanes. Colloids Surf. A 98, 235–241. DOI: org/10.1016/0927-7757(95)03119-X.
  • 15. Jesionowski, T. (2003). Influence of aminosilane surface modification and dyes adsorption on zeta potential of spherical silica particles formed in emulsion system. Colloids Surf. A 222, 87–94. DOI: org/10.1016/S0927-7757(03)00237-1.
  • 16. Jesionowski, T., Ciesielczyk, F. & Krysztafkiewicz, A. (2010). Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 119, 65–74. DOI: org/10.1016/j.matchemphys.2009.07.034.
  • 17. Sereshti, H., Eskandarpour, N., Samadi, S., and Aliakbarzadeh, G. (2014). Investigation on dracaena sanderiana phytoremediation ability for Hg and Cd using multivariate optimized task specific ionic liquid-based dispersive liquidliquid microextraction. Inter. J. Environ. Res. 8, 1075–1084. DOI: 10.22059/IJER.2014.801.
  • 18. Zhang, D., Bai, S., Ren, M. & Sun, Y. (2008). Optimization of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquid. Food Chem. 109, 72–80. DOI: org/10.1016/j.foodchem.2007.12.020
  • 19. S. Pandey. (2006). Analytical applications of roomtemperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 556, 38–45. doi: doi.org/10.1016/j.aca. 2005.06.038
  • 20. Cole, A.C., Jensen, J.L., Ntai, I., Tran, K.L.T., Weaver, K.J., Forbes, D.C. & Davis, J.H. (2002). Novel brønsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc. 124, 5962–5963. DOI: 10.1021/ja026290w.
  • 21. Liu, J., Jiang, G., Chi, Y., Cai, Y., Zhou, Q. & Hu, J. (2003). Use of ionic liquid for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal. Chem.75, 5870–5876. DOI: 10.1021/ac034506m.
  • 22. Bi, W., Tian, M. & Row, K.H. (2010). Solid-phase extraction of matrine and oxymatrine from Sophora Flavescens Ait using amino-imidazolium polymer. J. Sep. Sci. 33, 1739–1745. DOI: 10.1002/jssc.200900835.
  • 23. Zhu, S., Yu, P., Lei, M., Tong, Y., Zheng, L., Zhang, R., Ji, J., Chen, Q., Wu, Y. (2013). Investigation of the toxicity of the ionic liquid 1-butyl-3-methylimidazolium chloride to Saccharomyces cerevisiae AY93161 for ignocellulosic ethanol production. Pol. J. Chem. Tech. 15, 94–98. DOI: 10.2478/pjct-2013-0029.
  • 24. Jesionowski, T., Pokora, M., Sobaszkiewicz, K. & Pernak, J. (2004). Preparation and characterization of functionalized precipitated silica SYLOID®244 using ionic liquids as modifiers. Surf. Interface Anal. 36, 1491–1496. DOI: 10.1002/sia.1927.
  • 25. Khan, S., Soylak, M. & Kazi, T.G. (2013). Room temperature ionic liquid-based dispersive liquid phase microextraction for the separation/preconcentration of trace Cd2+ as 1-(2-pyridylazo)-2-naphthol (PAN) complex from environmental and biological samples and determined by FAAS. Biol. Trace Elem. Res. 156, 49–55. DOI: org/10.1007/s12011-013-9853-y.
  • 26. Fischer, L., Falta, T., Koellensperger, G., Stojanovic, A., Kogelnig, D., Galanski, M., Krachler, R., Keppler, B.K. & Hann, S. (2011). Ionic liquids for extraction of metals and metal containing compounds from communal and industrial waste water. Water Res., 45, 4601–4614. DOI: org/10.1016/j.watres.2011.06.011.
  • 27. Balasubramanian, A. & Venkatesan, S. (2012). Removal of phenolic compounds from aqueous solutions by emulsion liquid membrane containing ionic liquid [BMIM]+[PF6]– in tributylphosphate. Desalination 289, 27–34. DOI: org/10.1016/j.desal.2011.12.027.
  • 28. Raoov, M., Mohamad, S. & Abas, M.R. (2013). Removal of 2,4-dichlorophenol using cyclodextrin-ionic liquid polymer as a macroporous material: Characterization, adsorption isotherm, kinetic study, thermodynamics. J. Hazar. Mater. 263, 501–516. DOI: org/10.1016/j.jhazmat.2013.10.003.
  • 29. Zaretskii, M.I., Serebryakov, R.E., Chartov, E.M. & Ignatenko, A.I. (1993). Molecular interaction of fluorobenzenes with polar solvents. Mendeleev Commun. 3, 174–175. DOI: org/10.1070/MC1993v003n04ABEH000277.
  • 30. Hobza, P., Špirko, V., Havlas, Z., Buchhold, K., Reimann, B., Barth, H. & Brutschy, B. (1999). Anti-hydrogen bond between chloroform and fluorobenzene. Chem. Phys. Lett. 299, 180–186. DOI: org/10.1016/S0009-2614(98)01264-0.
  • 31. Zotti, L.A., Teobaldi, G., Palotás, K., Ji, W., Gao, H. & Hofer, W.A. (2007). Adsorption of benzene, fluorobenzene and meta-di-fluorobenzene on Cu(110): A Computational Study. J. Comput. Chem. 29, 1589–1595. DOI: 10.1002/jcc.20916.
  • 32. Huang, Y. & Huang, X. (2017). Fabrication and evaluation of a fluorophilic adsorbent for multiplemonolithic fiber solid-phase microextraction of fluorobenzenes. J. Chromatogr. A 1492, 12–18. DOI: org/10.1016/j.chroma.2017.03.001.
  • 33. Dziadas, M., Nowacka, M., Jesionowski, T. & Jeleń, H.H. (2011). Comparison of silica gel modified with three different functional groups with C-18 and styrene-divinylbenzene adsorbents for the analysis of selected volatile flavor compounds. Anal. Chim. Acta 699, 66–72. DOI: 10.1016/j.aca.2011.05.011.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc828859-bbda-4d84-ba75-a428444c6031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.