PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis and analytical simulation of the Rallis modified Stirling cycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Stirling cycle was developed by Rallis considering the adiabatic behaviour instead of isothermal behaviour of working fluid inside the expansion/compression volume, since the isothermal processes are very difficult to be realised in actual practice due to irreversibilities. In order to increase the performance of Rallis Stirling cycle engine, two modified versions of Rallis Stirling cycle engine model have been proposed and developed, called as Rallis modified Stirling cycle engine (RMSE). In this paper, the thermodynamic analysis of the developed models have been carried out and the simulated results are compared with the Rallis ideal model of Stirling cycle engine, as this model describes more accurately the thermodynamic cycle of practical Stirling machines. The results reveal the fact that the thermal efficiency of RMSE I model is enhanced by 38.06% and that of RMSE II model by 48.42%, whereas the power output is increased by 58.05% and 78.19% in case of RMSE I and RMSE II model respectively, when compared with the Rallis ideal adiabatic model of Stirling engine.
Rocznik
Strony
35--67
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, National Institute of Technology Patna, Ashok Rajpath, Patna-800 005, Bihar, India
  • Mechanical Engineering Department, National Institute of Technology Patna, Ashok Rajpath, Patna-800 005, Bihar, India
Bibliografia
  • [1] Ziabasharhagh M., Mahmoodi M.: Numerical solution of Beta-type Stirling engine by optimizing heat regenerator for increasing output power and efficiency. J. Basic Appl. Sci. Res. 2(2012), 1395–1406.
  • [2] Idroas M.Y., Farid N.A., Zainal Z.A., Noriman K., Azman M.: Mechanical power assessment of an Alpha V-Type Stirling engine converted diesel engine. Int. J. Mech. Mater. Eng. 6(2011), 160–166.
  • [3] Petrescu S., Costea M., Harman C., Florea T.: Application of the direct method to irreversible Stirling cycle with finite speed. Int. J. Energy Res. 26(2002), 589–609.
  • [4] Kongtragool B., Wongwises S.: A review of Solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain Energy Rev. 7(2003), 131–154.
  • [5] Kirillov N.G.: Power unit based on Stirling engines: New technologies based on alternative fuels. Rus. Eng. Res. 28(2008), 104–110.
  • [6] Puech P., Tishkova V.: Thermodynamic analysis of a Stirling engine including regenerator dead volume. Renew. Energ. 36(2011), 872–878.
  • [7] Walker G.: Stirling Engines. Clarendon Press, Oxford 1980.
  • [8] Majeski J.: Stirling Engine Assessment. EPRI, Palo Alto, CA (2002), 1007317.
  • [9] Hosseinzade H., Sayyaadi H., Babaelahi M.: A new closed-form analytical thermal model for simulating Stirling engines based on polytropic-finite speed thermodynamics. Energ. Convers. Manage. 90(2015), 395–408.
  • [10] Senft J.R.: A simple derivation of the generalized Beale number. In: Proc. 17th IECEC. (1982), 1652-55, No. 829273.
  • [11] Chen N.C.J., Griffin F.P.: A review of Stirling engine mathematical models. OAK Ridge National Laboratory for U.S. Deptt. of Energy, cont. W-7405-eng-26, 1983.
  • [12] Schmidt G.: Classical analysis of operation of Stirling engine. A report published in German Engineering Union (1871), XV, 1–12 (in Geman).
  • [13] Thombare D.G., Verma S.K.: Technological development in the Stirling cycle engines. Renew. Sust. Energ. Rev. 12(2008), 1–38.
  • [14] Wagner A.: Calculation and Experiments on γ-Type Stirling Engines. PhD thesis, School of Engineering, University of Wales, Cardiff 2008.
  • [15] Finkelstein T.: Generalised thermodynamic analysis of Stirling cycle engines. SAE Technical. (1960), Paper 600222.
  • [16] Finkelstein T.: Analogue simulation of Stirling engine. Simulation (1975), 2.
  • [17] Invernizzi C.M.: Closed Power Cycles: Thermodynamic Fundamentals and Applications. Springer-Verlag London. eBook ISBN: 978-1-4471-5140-1; 2013.
  • [18] Qvale E.B., Smith J.I.: A mathematical model for steady operation of Stirling-type engines. J. Eng. Power (1968), 45–50.
  • [19] Qvale E.B.: An Analytical Model of Stirling Type Engines. PhD thesis, Dept. Mech. Eng., Massachusetts Institute of Technology, 1967.
  • [20] Rios P.A.: An analytical and experimental investigation of the Stirling cycle. PhD thesis, Dept. Mech. Eng., Massachusetts Institute of Technology, 1969.
  • [21] Feurer B.: Degree of freedom in the layout of Stirling engines. Von Karman Institute for fluid dynamics, Lecture Series 53, 1973.
  • [22] Lee K., Smith J.I.: Performance loss due to transient heat transfer in the cylinders of Stirling engines. In: Proc. 15th IECEC 1980, No. 809338, 1706–1909.
  • [23] Shoureshi R.: Analysis and Design of Stirling Engines for Waste-Heat Recovery. PhD thesis, Dept. Mech. Eng., Massachusetts Institute of Technology, 1981.
  • [24] Shoureshi R.: Simple models for analysis and design of practical Stirling engines. In: Proc. 17th IECEC, 1982, No. 829272, 1647–51.
  • [25] Urieli I., Berchowitz D.M.: Stirling Cycle Engine Analysis, 1st Edn. Adam Hilger Ltd., Bristol 1984.
  • [26] Timoumi Y., Tlili I., Nasrallah S.B.: Design and performance optimization of GPU-3 Stirling engines. Energy 33(2008), 1100–14.
  • [27] Tlili I., Timoumi Y., Nasrallah S.B.: Analysis and design consideration of mean temperature differential Stirling engine for solar application. Renew. Energ. 33(2008), 1911–21.
  • [28] Abbas M., Said N., Boumeddane B.: Thermal analysis of Stirling engine solar driven. Revue Energ. Renouve. 11(2008), 503–514.
  • [29] Babaelahi M., Sayyaadi H.: Simple-II: A new numerical thermal model for predicting thermal performance of Stirling engines. Energy 69(2014), 873–890.
  • [30] Hosseinzade H., Sayyaadi H.: CAFS: The combined adiabatic-finite speed thermal model for simulation and optimization of Stirling engines. Energ. Convers. Manage. 91(2015), 32–53.
  • [31] Berchowitz D.M.: Stirling Cycle Engine Design and Optimization. PhD thesis, University of Witwatersrand, 1986.
  • [32] Ivanovich G.A.: Stirling Engine, Thermal to Mechanical Energy Conversion: Engines and Requirements, Vol. I. http://www.eolss.net/Eolss-sampleAllChapter.aspx
  • [33] Kongtragool B., Wongwises S.: Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator. Renewable Energy 31(2006), 345–359.
  • [34] Guozhong D., Jiwei Y., Shuiming S., Chen D.: A typical simulation of a 3-KW Stirling engine. TELKOMNIKA Indonesian J. Electr. Eng. 10(2012), 1273–1279.
  • [35] Iwamoto S., Hirata K., Toda F.: Performance of Stirling engines (Arrangement for experimental results and performance prediction method). Trans. Jap. Soc. Mech. Eng. 65(1999), 361–368 (in Japanese).
  • [36] Walker G.: Elementary guidelines for Stirling engines. In: Proc. 14th Intersociety Energy Conversion Engineering Conf. (1979), 1066–1068.
  • [37] Babaelahi M., Sayyaadi H.: A new thermal model based on polytropic numerical simulation of Stirling engines. Appl. Energ. 141(2015), 143–159.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc7fe2e5-d5c7-4883-aaf3-704702207bb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.