PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of thermal cycles and phase transformations during multi-pass ARC weld surfacing of steel casts taking into account heat of the weld

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a model of phase transformations during multipass weld surfaced steel casts is presented. In the temperature field calculation algorithm, the influence of the heat of overlaying beads and a self-cooling of previously overlayed beads have been taken into account. The fusion area, full and part transformation zones, by solidus, A1 and A3 and A A1 temperatures has been determined, respectively. The temperatures of the beginning and the end of the phase changes during cooling were determined on the basis of the time-temperature-transformation welding diagram. In the phase change kinetic description, the JMAK law and KM formula were used. Theoretical considerations are illustrated by example of volume share calculations of particular structural components during the weld surfaced 230-450 W steel cast. The results of computation in the graphical forms are presented: welding thermal cycle diagrams and structural share change histories at selected points, as well as temperature and the phase share distributions in cross section.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Institute of Mechanical Technology, Czestochowa University of Technology Czestochowa, Poland
autor
  • Institute of Mechanical Technology, Czestochowa University of Technology Czestochowa, Poland
autor
  • Institute of Mechanical Technology, Czestochowa University of Technology Czestochowa, Poland
Bibliografia
  • [1] Chen, J., Schwenk, C., Wu, C.S., & Rethmeier, M. (2012). Predicting the influence angle on heat transfer and fluid flow for new gas metal arc processes. Int. J. Heat Mass Transf., 55, 102-111.
  • [2] Fachinotti, V.D., Anca, A.A., & Cardona, A. (2011). Analytical solutions of the thermal field induced by moving double-ellipsoidal and double elliptical heat sources in a semi-infinite body. Int. J. Num. Meth. Biomech. Eng., 27, 595-607.
  • [3] Heinze, C., Schwenk, C., & Rethmeier, M. (2012). Numerical calculation of residual stress development of multi-pass gas metal arc welding under high restraint conditions. Mat. Design, 35, 201-209.
  • [4] Joshi, S., Hildebrand, J., Aloraier, A.S., & Rabczuk, T. (2013). Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate. Comp. Mater. Sci., 69, 559-565.
  • [5] Antonakakis, T., Maglioni, C., & Vlachoudis, V. (2013). Closed form solutions of the heat diffusion equation with Gaussian source. Int. J. Heat Mass Transf., 62, 314-322.
  • [6] Ghosh, A., Barman, N., Chattopadhyay, H., & Hloch, S. (2013). A study of thermal behavior during submerged arc welding. Strojniški vestnik - J. Mech. Eng., 59, 333-338.
  • [7] Fu, G., Lourenco, M.I., Duan, M., & Estefen, S.F. (2014). Effect of boundary conditions on residual stress and distortion in T-joint welds. J. Constr. Steel Res., 102, 121-135.
  • [8] Franko, A., Romoli, L., & Musacchio, A. (2014). Modelling for predicting seam geometry in laser beam welding of stainless steel. Int. J. Thermal Sci., 79, 194-205.
  • [9] Salimi, S., Bahemmat, P., & Haghpanahi, M. (2014). A 3D transient analytical solution to the temperature field during dissimilar welding processes. Int. J. Mechn. Sci., 79, 66-74.
  • [10] Kant, M.A., & Rohr, P.P. (2016). Determination of surface heat flux distributions by using surface temperature measurements and applying inverse techniques. Int. J. Heat Mass Tranf., 99, 1-9.
  • [11] Kulawik, A., Sczygiol, N., & Wróbel, J. (2016). Determination of stresses in the steel pipe during the superficial heat treatment process with helical path. J. Appl. Math. Comput. Mech., 15(1), 79-86.
  • [12] Ghosh, A., Yadav, A., & Kumar, A. (2017). Modelling and experimental validation of moving tilted volumetric heat source in gas metal arc welding processes. J. Mater. Process. Tech., 239, 52-65.
  • [13] Lindgren, L.E., Runnemalm, H., & Näsström, M.O. (1999). Simulation of multipass welding of a thick plate. Int. J. Numer. Meth. Engng., 44, 1301-1316.
  • [14] Börjesson, L., & Lindgren, L.E. (2001). Simulation of multipass welding with simultaneous computation of material properties. Trans. ASME, 123, 106-111.
  • [15] Lindgren, L.E., & Hedblom, E. (2001). Modelling of addition of filler material in large deformation analysis of multipass welding. Commun. Numer. Meth. Eng., 17, 647-657.
  • [16] Deng, D., & Murakawa, H. (2006). Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput. Mater. Sci., 37, 269-277.
  • [17] Ramjaun, T.I., Stone, H.J., Karlsson, L., Gharghouri, M., Dalaei, K., Moat, R., & Bhadeshia, H.K.D.H. (2014). Surface residual stresses in multipass welds produced using low transformation temperature filler alloys. Sci. Technol. Weld. Joining, 19, 623-630.
  • [18] Novotný, L., Abreu, H.F.G., Miranda, H.C., & Béreš, M. (2016). Simulations in multipass welds using low transformation temperature filler material. Sci. Technol. Weld. Join., 21, 680-687.
  • [19] Sladek, A., Patek, M., & Mician, M. (2017). Behavior of steel branch connections during fatigue loading. Arch. Metal. Mater., 62(3), 1597-1601.
  • [20] Wang, X.L., Payzant, E.A., Taljat, B., Hubbard, C.R., Keiser, J.R., & Jirinec, M.J. (1997). Experimental determination of the residual stresses in a spiral weld overlay tube. Mater. Sci. Eng., A232, 31-38.
  • [21] Wojnowski, D., Oh, U.K., & Indacochea, J.E. (2000). Metallurgical assessment of the softened HAZ region during multipass welding. Trans. ASME, 122, 310-315.
  • [22] Murugan, S., Sanjai, K., Kumar, P.V., Jayakumar, T., Raj, B., & Bose, M.S.C. (2001). Temperature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads. Int. J. Pres. Ves. Pip., 78, 307-317.
  • [23] Kolhe, K.P., & Datta, C.K. (2008). Prediction of microstructure and mechanical of multipass SAW. J. Mater. Process. Techn., 197, 241-249.
  • [24] Winczek, J. (2010). Analytical solution to transient temperature field in a half-infinite body caused by moving volumetric heat source. Int. J. Heat Mass Transf., 53, 5774-5781.
  • [25] Winczek, J. (2011). New approach to modeling of temperature field in surfaced steel elements. Int. J. Heat Mass Transf., 54, 4702-4709.
  • [26] Avrami, M. (1939). Kinetics of phase change. I. General theory. J. Chem. Phys., 7, 1103-1112.
  • [27] Piekarska, W., Kubiak, M., & Bokota, A. (2011). Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joint. Arch. Metal. Mater., 56, 409-421.
  • [28] Koistinen, D.P., & Marburger, R.E. (1959). A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta. Metal., 7, 59-60.
  • [29] Piekarska, W., Goszczyńska, D., & Saternus, Z. (2015). Application of analytical methods for predicting the structures of steel phase transformations in welded joints. J. Appl. Math. Comput. Mech., 14(2), 61-72.
  • [30] Winczek, J., Makles, K., Gucwa, M., Gnatowska, R., & Hatala, M. (2017). Modelling of strains during SAW surfacing taking into heat of the weld in temperature field description and phase transformations. IOP Conf. Series: Materials Science and Engineering (225) 012038 doi:10.1088/1757-899X/225/1/012038.
  • [31] Hrabe, P., Choteborsky, R., & Navratilova, M. (2009). Influence of welding parameters on geometry of weld deposit bead. In: Int. Conf. Economic Eng. Manufacturing Systems, Brasov, 26-27 November, Regent 10 3(27) 291-294.
  • [32] Brózda, J., Pilarczyk, J., & Zeman, M. (1983). TTT-welding Diagrams Transformation of Austenite. Katowice: Śląsk (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc7ec9e9-19ed-48af-b399-b2e21a5db5d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.