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Abstract The paper is devoted to the analytical modelling of a simply supported expanded-tapered 
sandwich beam. The simplified analytical model of this beam with omitting the shear effect is elaborated. 
Based on Hamilton’s principle, the differential equation of motion of this beam is obtained. This equation is 
analytically solved with consideration of the deflection line of this beam subjected to its own weight. The 
fundamental natural frequencies for exemplary beams are derived. Moreover, the FEM model of the beam 
in the ABAQUS is developed. The calculation results of the fundamental natural frequency of exemplary 
beams of these two methods are presented in tables and figures.  
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1. Introduction  

The vibration problems of beams, plates and shells, as main parts of the structures, e.g. rail vehicles, are the 
subject of a contemporary research.  

Rosa and Lippiello [1] studied natural frequencies of tapered beams. Authors used cell discretization 
method to obtain results. These results were compared with numerical studies. Bayat et al. [2] considered 
nonlinear free vibrations of tapered beams. Authors used two different approaches to obtain natural 
frequencies of beams: Max-Min Approach (MMA) and Homotopy Perturbation Method (HPM) . Sayyad and 
Ghugal [3] presented a critical review of literature (515 references) in the last few decades on bending, 
buckling and free vibration problems of laminated composite and sandwich beams. Meksi et al. [4] 
developed shear deformation theory of functionally graded sandwich plates. Theory proposed by authors 
focused on four unknown functions to solve. Authors compared obtained results with numerical studies. 
Magnucki et al. [5] studied analytically and numerically a three-point bending of an expanded-tapered 
sandwich beam. Authors developed the analytical model of this beam with consideration of the broken-line 
theory. Magnucki et al. [6] studied analytically and numerically the free flexural vibrations of homogeneous 
beams of symmetrically variable depth and bisymmetrical cross sections. Magnucki et al. [7] presented the 
bending, buckling and free vibration problems of simply-supported sandwich beam. Authors developed 
three beam models and performed detailed analytical and numerical FEM calculations. Kelly [8] in the 
monograph presented the basis of vibrations in engineering and showed the mathematical way to model 
and solved them. The monograph consists of 13 chapters entirely devoted to vibrations.  

The subject of the paper is a simply supported expanded-tapered sandwich beam of length L. This beam 
is situated in the Cartesian coordinate system xyz (see Fig. 1).  

 

 

Figure 1. Scheme of the expanded-tapered sandwich beam.  
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2. Analytical model of the beam – fundamental natural frequency  

The plane cross section of the expanded-tapered sandwich beam is shown in Fig. 2.  
 

 

Figure 2. Scheme of the plane cross section of the beam.  

The individual dimensions of the beam as shown in Fig.2. are as follows: ℎ𝑓𝑓 – thicknesses of the faces,  

ℎ𝑐𝑐(𝑥𝑥) = ℎ𝑐𝑐0 + 2𝑥𝑥 tan𝛼𝛼 – thickness of the core, ℎ(𝑥𝑥) = ℎ𝑐𝑐(𝑥𝑥) + 2 ℎ𝑓𝑓 cos𝛼𝛼⁄  – total depth of the beam, 

for 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿 2⁄  , ℎ𝑐𝑐0 – initial thickness of the core (Fig. 1) and b – width of the beam.  

The simplified analytical model of this beam with consideration of the Bernoulli-Euler beam theory is 
elaborated. Therefore, a plane cross section of the beam before bending is plane after bending (see Fig. 3).  

 

 

Figure 3. Scheme of the plane cross section of the beam before and after bending.  

The longitudinal displacement in accordance with Fig. 3. is as follows  

𝑢𝑢(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  ,  (1) 

where v(x, t) – deflection of the beam, t – time.  
Consequently, the strains  

𝜀𝜀𝑥𝑥(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑦𝑦
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

  ,         𝛾𝛾(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0,  (2) 

and stresses (Hooke’s law) for successive layers  

𝜎𝜎𝑥𝑥
(𝑢𝑢𝑢𝑢)(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝐸𝐸𝑓𝑓𝑦𝑦

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

,       𝜎𝜎𝑥𝑥
(𝑐𝑐)(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝐸𝐸𝑐𝑐𝑦𝑦

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

,       𝜎𝜎𝑥𝑥
(𝑙𝑙𝑙𝑙)(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = −𝐸𝐸𝑓𝑓𝑦𝑦

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

 ,  (3) 

where: Ef – Young’s modulus of upper (uf) and lower (lf) faces, Ec – Young’s module of the core (c).  
The elastic strain energy with consideration of the expressions (3) is as follows  

𝑈𝑈𝜀𝜀 = 𝑏𝑏 � �𝐸𝐸𝑓𝑓 � 𝑦𝑦2𝑑𝑑𝑑𝑑

−ℎ𝑐𝑐(𝑥𝑥) 2⁄

−ℎ(𝑥𝑥) 2⁄

+ 𝐸𝐸𝑐𝑐 � 𝑦𝑦2𝑑𝑑𝑑𝑑

ℎ𝑐𝑐(𝑥𝑥) 2⁄

−ℎ𝑐𝑐(𝑥𝑥) 2⁄

+ 𝐸𝐸𝑓𝑓 � 𝑦𝑦2𝑑𝑑𝑑𝑑

ℎ(𝑥𝑥) 2⁄

ℎ𝑐𝑐(𝑥𝑥) 2⁄

� �
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑥𝑥2

�
2

𝑑𝑑𝑑𝑑

𝐿𝐿 2⁄

0

 .  (4) 
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Integrating this expression (4), and after simple transformation, one obtains  

𝑈𝑈𝜀𝜀 =
𝐸𝐸𝑓𝑓𝑏𝑏ℎ𝑐𝑐03

12𝐿𝐿3
� ��3𝑓𝑓𝛼𝛼2(𝜉𝜉) + 3𝑓𝑓𝛼𝛼(𝜉𝜉)𝑘𝑘𝑓𝑓 + 𝑘𝑘𝑓𝑓2�𝑘𝑘𝑓𝑓 + 𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼3(𝜉𝜉)� �

𝜕𝜕2𝑣𝑣
𝜕𝜕𝜉𝜉2

�
2

𝑑𝑑𝑑𝑑

1 2⁄

0

 ,  (5) 

where: the function  

𝑓𝑓𝛼𝛼(𝜉𝜉) = 1 + 2𝜆𝜆𝜆𝜆 tan𝛼𝛼,  (6) 

and χf = hf/hc0 – relative thickness of the faces, kf = 2χf/cosα – coefficient, λ = L/hc0 – relative length of the 
beam, ec = Ec/Ef – relative elasticity module of the core, ξ = x/L – dimensionless coordinate.  
The mass intensity of the beam  

𝑚𝑚(𝑥𝑥) = �𝜌𝜌𝑐𝑐ℎ𝑐𝑐(𝑥𝑥) + 2𝜌𝜌𝑓𝑓
ℎ𝑓𝑓

cos𝛼𝛼
� 𝑏𝑏,  (7) 

where ρc, ρf – mass densities of the core and faces.  
However, the mass intensity of the beam with consideration of the dimensionless sizes and dimensionless 
coordinate is in the form  

𝑚𝑚(𝜉𝜉) = ��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�𝜌𝜌𝑓𝑓𝑏𝑏ℎ𝑐𝑐0,  (8) 

where 𝜌𝜌𝑐𝑐 𝜌𝜌𝑓𝑓⁄ = �𝑒𝑒𝑐𝑐– relative mass density of the core.  
The kinetic energy with consideration of the expression (8) is as follows  

𝑈𝑈𝑘𝑘 = 𝜌𝜌𝑓𝑓𝑏𝑏ℎ𝑐𝑐0𝐿𝐿 � ��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�

1 2⁄

0

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

𝑑𝑑𝑑𝑑.  (9) 

Based on the Hamilton’s principle 𝛿𝛿 ∫ (𝑈𝑈𝑘𝑘 − 𝑈𝑈𝜀𝜀)𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1

, the differential equation of motion of the expanded-
tapered sandwich beam is obtained in the following form  

��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�
𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2

+ �𝑓𝑓𝑣𝑣4(𝜉𝜉)
𝜕𝜕4𝑣𝑣
𝜕𝜕𝜉𝜉4

+ 𝑓𝑓𝑣𝑣3(𝜉𝜉)
𝜕𝜕3𝑣𝑣
𝜕𝜕𝜉𝜉3

+ 𝑓𝑓𝑣𝑣2(𝜉𝜉)
𝜕𝜕2𝑣𝑣
𝜕𝜕𝜉𝜉2

�
𝐸𝐸𝑓𝑓

12𝜌𝜌𝑓𝑓𝜆𝜆2𝐿𝐿2
= 0,   (10) 

where occurring functions are as follows:  

𝑓𝑓𝑣𝑣4(𝜉𝜉) = 𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼3(𝜉𝜉) + 3𝑓𝑓𝛼𝛼2(𝜉𝜉)𝑘𝑘𝑓𝑓 + 3𝑓𝑓𝛼𝛼(𝜉𝜉)𝑘𝑘𝑓𝑓2 + 𝑘𝑘𝑓𝑓3 ,  (11) 

𝑓𝑓𝑣𝑣3(𝜉𝜉) = 12𝜆𝜆�𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼2(𝜉𝜉) + 2𝑓𝑓𝛼𝛼(𝜉𝜉)𝑘𝑘𝑓𝑓 + 𝑘𝑘𝑓𝑓2� tan𝛼𝛼  ,         𝑓𝑓𝑣𝑣2(𝜉𝜉) = 24𝜆𝜆2�𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�tan2𝛼𝛼.   (12) 

The form of the unknown deflection function of the beam is as follows  

𝑣𝑣(𝜉𝜉, 𝑡𝑡) = 𝑣̅𝑣(𝜉𝜉)𝑣𝑣𝑎𝑎(𝑡𝑡) ,  (13) 

where: 𝑣̅𝑣(𝜉𝜉) – the dimensionless deflection curve, 𝑣𝑣𝑎𝑎(𝑡𝑡) – the function of the time.  
The dimensionless deflection curve of the beam is developed taking into account the paper [6]. The 

bending moment of this sandwich beam, according to the Bernoulli-Euler beam theory, is formulated as 
follows  

𝑀𝑀𝑏𝑏(𝑥𝑥) = 𝑏𝑏 � � 𝑦𝑦𝜎𝜎𝑥𝑥
(𝑢𝑢𝑢𝑢)𝑑𝑑𝑑𝑑

−ℎ𝑐𝑐(𝑥𝑥) 2⁄

−ℎ(𝑥𝑥) 2⁄

+ 𝐸𝐸𝑐𝑐 � 𝑦𝑦𝜎𝜎𝑥𝑥
(𝑐𝑐)𝑑𝑑𝑑𝑑

ℎ𝑐𝑐(𝑥𝑥) 2⁄

−ℎ𝑐𝑐(𝑥𝑥) 2⁄

+ 𝐸𝐸𝑓𝑓 � 𝑦𝑦𝜎𝜎𝑥𝑥
(𝑙𝑙𝑙𝑙)𝑑𝑑𝑑𝑑

ℎ(𝑥𝑥) 2⁄

ℎ𝑐𝑐(𝑥𝑥) 2⁄

� .  (14) 

Integrating this expression (14), with consideration of the expressions (3), and after transformation, the 
differential equation of the beam dimensionless deflection curve was obtained in the form  

 
𝑑𝑑2𝑣̅𝑣
𝑑𝑑𝜉𝜉2

= −
𝑀𝑀�𝑏𝑏(𝜉𝜉)
𝑓𝑓𝑣𝑣4(𝜉𝜉) .  (15) 
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Thus  

 𝑣̅𝑣(𝜉𝜉) = 𝐶𝐶1𝜉𝜉 −�
𝑀𝑀�𝑏𝑏(𝜉𝜉)
𝑓𝑓𝑣𝑣4(𝜉𝜉)  𝑑𝑑𝜉𝜉2,  (16) 

where the integration constant 𝐶𝐶1 = ∫ 𝑀𝑀�𝑏𝑏(𝜉𝜉)
𝑓𝑓𝑣𝑣4(𝜉𝜉)

𝑑𝑑𝑑𝑑1 2⁄
0 .  The function (16) satisfies following conditions: 𝑣̅𝑣(0) =

0 and 𝑑𝑑𝑣̅𝑣 𝑑𝑑𝑑𝑑⁄ ]1 2⁄ = 0. The beam subjected its own weight is shown in Fig. 4.  

 

Figure 4. Scheme of the load of the beam under its own weight.  

The intensity of this load, with consideration of the expression (6), is as follows  

𝑞𝑞(𝜉𝜉) = ��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�𝑔𝑔𝑔𝑔𝑓𝑓𝑏𝑏ℎ𝑐𝑐0,  (17) 

where g = 9.81 m/s2 – acceleration of gravity. Therefore, after integration the reaction of the supports is in the 
form:  

𝑅𝑅 = 𝑔𝑔𝑔𝑔𝑓𝑓𝑏𝑏ℎ𝑐𝑐0𝐿𝐿 � ��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�𝑑𝑑𝑑𝑑

1 2⁄

0

=  
1
4
��𝑒𝑒𝑐𝑐(2 + 𝜆𝜆 tan𝛼𝛼) + 2𝑘𝑘𝑓𝑓�𝑔𝑔𝑔𝑔𝑓𝑓𝑏𝑏ℎ𝑐𝑐0𝐿𝐿.   (18) 

Consequently, the bending moment: 

𝑀𝑀𝑏𝑏(𝜉𝜉) = 𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑔𝑔𝑔𝑔𝑓𝑓𝑏𝑏ℎ𝑐𝑐0𝐿𝐿2 ���𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉1) + 𝑘𝑘𝑓𝑓�(𝜉𝜉 − 𝜉𝜉1)𝑑𝑑𝜉𝜉1 .

𝜉𝜉

0

  (19) 

Thus, after integration and simple transformation, one obtains  

𝑀𝑀𝑏𝑏(𝜉𝜉) = 𝑀𝑀�𝑏𝑏 (𝜉𝜉)𝑞𝑞0𝐿𝐿2 ,  (20) 

where q0 = gρfbhc0 – substitute intensity of the load, and the dimensionless bending moment  

𝑀𝑀�𝑏𝑏(𝜉𝜉) =
1

12
�6��𝑒𝑒𝑐𝑐 + 2𝑘𝑘𝑓𝑓�(𝜉𝜉 − 𝜉𝜉2) + �𝑒𝑒𝑐𝑐𝜆𝜆(3𝜉𝜉 − 4𝜉𝜉3) tan𝛼𝛼�.   (21) 

The differential equation of motion of the expanded-tapered sandwich beam Eq. (10), with consideration of 
the functions (13), (16) and (21), after a simple transformation, one obtains  

 

��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�𝑣̅𝑣(𝜉𝜉)
𝑑𝑑2𝑣𝑣𝑎𝑎
𝑑𝑑𝑡𝑡2

+ ��𝑒𝑒𝑐𝑐𝑓𝑓𝛼𝛼(𝜉𝜉) + 𝑘𝑘𝑓𝑓�  
𝐸𝐸𝑓𝑓

12𝜌𝜌𝑓𝑓𝜆𝜆2𝐿𝐿2
 𝑣𝑣𝑎𝑎(𝑡𝑡) = 0.  (22) 

This equation is approximately solved using the Galerkin method ∫ ℜ(𝜉𝜉)𝑣̅𝑣(𝜉𝜉)1 2⁄
0 𝑑𝑑𝑑𝑑 = 0, where ℜ(𝜉𝜉) – the 

left part of Eq. (22). Integrating the expression, with consideration of the function (17) and after 
transformation, one obtains  

𝑑𝑑2𝑣𝑣𝑎𝑎
𝑑𝑑𝑡𝑡2

+ 𝐶𝐶𝑓𝑓
𝐸𝐸𝑓𝑓

12𝜌𝜌𝑓𝑓𝜆𝜆2𝐿𝐿2
𝑣𝑣𝑎𝑎(𝑡𝑡) = 0,   (23) 

where: Cf=Jv/Jk – dimensionless coefficient, and 𝐽𝐽𝑘𝑘 = ∫ 𝑓𝑓𝛼𝛼(𝜉𝜉)𝑣̅𝑣2(𝜉𝜉)1 2⁄
0 𝑑𝑑𝑑𝑑,  𝐽𝐽𝑣𝑣 = ∫ 𝑓𝑓𝛼𝛼(𝜉𝜉)𝑣̅𝑣(𝜉𝜉)1 2⁄

0 𝑑𝑑𝑑𝑑.  
The equation (23) is approximately solved with the use of the assumed function  
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𝑣𝑣𝑎𝑎(𝑡𝑡) = 𝑣𝑣𝑎𝑎 sin(𝜔𝜔𝜔𝜔) ,  (24) 

where: va – amplitude, ω – fundamental natural frequency.  
Substituting this function into Eq. (23), the fundamental natural frequency is obtained  

𝜔𝜔 =
√3 ⋅ 103

6𝜆𝜆𝜆𝜆 �𝐶𝐶𝑓𝑓
𝐸𝐸𝑓𝑓
𝜚𝜚𝑓𝑓

    �
rad
𝑠𝑠
�      or       𝑓𝑓𝑧𝑧

(𝐴𝐴𝐴𝐴) =
𝜔𝜔
2𝜋𝜋

=
√3 ⋅ 103

12𝜋𝜋𝜋𝜋𝜋𝜋 �𝐶𝐶𝑓𝑓
𝐸𝐸𝑓𝑓
𝜚𝜚𝑓𝑓

    [Hz].    (25) 

Exemplary calculations are carried out for the following data of beams: hc0=16 mm, hf=2 mm, Ef=72000 
MPa, ρf=2710 kg/m3, νc=0.3, ec=1/32, χf=1/8. The results of the calculations for two sample beams are 
specified in Tabs. 1-2.  

Table 1. The calculation results for the beam B-1 of length L=0.6 m and relative length λ=37.5.  

α [o]  0  1  2  3  4  5  
Cf  225.00  372.50  524.36  679.32  837.12  997.78  
𝑓𝑓𝑧𝑧

(𝐴𝐴𝐴𝐴) [Hz]  157.88  203.14  241.01  274.32  304.52  332.46  
 

Table 2. The calculation results for the beam B-2 of length L=0.8 m and relative length λ=50.0.  

α [o]  0  1  2  3  4  5  
Cf  225.00  422.67  627.02  836.07  1049.56  1267.68  
𝑓𝑓𝑧𝑧

(𝐴𝐴𝐴𝐴) [Hz]  88.81  121.72  148.25  171.19  191.80  210.79  
 

Moreover, these values of the fundamental natural frequency are graphically presented in Fig. 6.  

3. Numerical FEM model of the beam – fundamental natural frequency  

The numerical FEM model of the expanded-tapered sandwich beam is developed with the use of the 
ABAQUS 6.12 (see Fig. 5). The mesh consists of hexahedral quadratic finite elements (C3D8R type). 

 

 
Figure 5. Scheme of the FEM model of the expanded-tapered sandwich beam.  

The FEM calculations are performed for the same data as in analytical studies. The results of the 
calculations for the same two sample beams are specified in Tables. 3-4.  

Table 3. The calculation results for the beam B-1 of length L=0.6 m and relative length λ=37.5.  

α [o]  0  1  2  3  4  5  
𝑓𝑓𝑧𝑧

(𝐹𝐹𝐹𝐹𝐹𝐹) [Hz]  154.08  196.99  231.76  261.19  286.71  309.19  
 

Table 4. The calculation results for the beam B-2 of length L=0.8 m and relative length λ=50.0.  

α [o]  0  1  2  3  4  5  
𝑓𝑓𝑧𝑧

(𝐹𝐹𝐹𝐹𝐹𝐹) [Hz]  87.49  119.41  144.51  165.89  183.90  200.13  
 

Moreover, the values of the fundamental natural frequency are graphically presented in Fig. 6.  
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4. Conclusions  

Comparing the values of the fundamental natural frequency of the beams calculated analytically (An) (see 
Tabs. 1-2) and numerically (FEM) (see Tabs. 3-4) it is easy to notice, that the differences between them 
increase with increasing the taper angle α. Moreover, these differences decrease with increasing length L of 
the beam. These relative differences for two sample beams are specified in Tab. 5.  

Table 5. The relative differences ∆= �𝑓𝑓𝑧𝑧
(𝐴𝐴𝐴𝐴) − 𝑓𝑓𝑧𝑧

(𝐹𝐹𝐹𝐹𝐹𝐹)� 𝑓𝑓𝑧𝑧
(𝐹𝐹𝐹𝐹𝐹𝐹)�  for two sample beams B-1 and B-2.  

α [o]  0  1  2  3  4  5  
∆(𝐵𝐵−1)%  2.5  3.1  4.0  5.0  6.2  7.5  
∆(𝐵𝐵−2)%  1.5  1.9  2.6  3.2  4.3  5.3  

 

The analytical and numerical results are graphically compared in Fig. 6.  
 

 
Figure 6. Graphs of the values of the fundamental natural frequency of two sample beams.  

These differences between the values of the fundamental natural frequency result primarily from the 
adopted simplified analytical model of the beam - omitting the shear effect. 

To sum up, the novelty of this work is a simplified sandwich tapered beam model that can be successfully 
used in simple engineering calculations. Differences in fundamental natural frequencies obtained using this 
model compared to the numerical FEM model are less than 8%. 
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