Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
BTEX w powietrzu salonów kosmetycznych – badania wstępne
Języki publikacji
Abstrakty
This study aimed to identify and carry out a preliminary assessment of the health exposure of employees working in beauty salons to selected compounds from the BTEX group. The selected salons were all situated in the Silesian Voivodeship, recognized as one of the most polluted region in Poland and European hot spot area in terms of air pollution. Measurements encompassed weekly monitoring of marked BTEX compounds in beauty salons specializing in nail styling, hairdressing and cosmetics. As an internal substrate, measurements were also taken in a children’s hairdressing salon where no chemical products were used; also a weekly measurement was performed for outdoor air to look for outdoor background BTEX concentrations. For BTEX determination, Tenax sorbent tubes insertion was employed. The collected samples were analysed using a Clarus 500 gas chromatograph with a flame ionization detector (FID) connected to a Perkin Elmer Turbo-Matrix 100 thermal desorber. Toluene concentrations were found to be notably elevated, reaching up to 73.19 μg/m³ in adult hairdresser salons, representing an order of magnitude higher than that found in indoor background (children’s hairdresser) and outdoor background. Importantly, the concentrations of the measured BTEX compounds remained below the acceptable levels defined by the National Institute for Occupational Safety and Health (NIOSH). Among the individual BTEX compounds, nail treatment salons exhibited the highest mean concentrations for benzene; m,p-xylene; n-propylbenzene; styrene; isopropylbenzene; and 1,3,5-trimethylbenzene. Conversely, cosmetic salons registered the highest mean concentration of ethylbenzene; o-xylene; and n-propylbenzene. The results indicate a chronic exposure of salon employees to the tested compounds, with heightened levels particularly noticeable among individuals with extensive professional experience. These findings underscore the importance of ongoing monitoring and occupational health measures in beauty salons, emphasizing the potential risks associated with long-term exposure to BTEX compounds.
Celem pracy było rozpoznanie i wstępna ocena narażenia zdrowia pracowników salonów kosmetycznych na wybrane związki z grupy BTEX. Wszystkie wybrane salony znajdowały się na terenie województwa śląskiego, uznanego za jeden z najbardziej zanieczyszczonych regionów w Polsce i europejskiego obszaru hot-spot pod względem zanieczyszczenia powietrza. Pomiary obejmowały cotygodniowe monitorowanie oznaczonych związków BTEX w gabinetach kosmetycznych specjalizujących się w stylizacji paznokci, fryzjerstwie i kosmetyce. Pomiary wykonano także w tle – salonie fryzjerskim dla dzieci, gdzie nie stosowano żadnych środków chemicznych; przeprowadzono także cotygodniowy pomiar powietrza zewnętrznego w celu sprawdzenia stężeń BTEX w tle na zewnątrz. Do oznaczania BTEX zastosowano rurki z wypełnieniem Tenax. Pobrane próbki poddano analizie za pomocą chromatografu gazowego Clarus 500 z detektorem płomieniowo-jonizacyjnym (FID) podłączonego do desorbera termicznego Turbo-Matrix 100 firmy Perkin Elmer. Stężenia toluenu były szczególnie podwyższone, osiągając 73,19 μg/m3 w salonach fryzjerskich dla dorosłych, o rząd wielkości wyższe niż stężenia w tle (fryzjer dziecięcy), jak i w powietrzu zewnętrznym. Co ważne, stężenia mierzonych związków BTEX utrzymywały się poniżej dopuszczalnych poziomów określonych przez Narodowy Instytut Bezpieczeństwa i Higieny Pracy (NIOSH). Spośród poszczególnych związków BTEX w salonach pielęgnacji paznokci najwyższe średnie stężenia wykazywały benzen; m, p-ksylen; n-propylobenzen; styren; izopropylobenzen i 1,3,5-trimetylobenzen. Natomiast salony kosmetyczne odnotowały najwyższe średnie stężenia etylobenzenu, o-ksylenu i n-propylobenzenu. Wyniki wskazują na chroniczne narażenie pracowników salonu na badane związki, przy czym podwyższony poziom narażenia będzie zauważalny wśród osób z dłuższym stażem zawodowym. Uzyskane wyniki podkreślają znaczenie ciągłego monitorowania i stosowania środków higieny pracy w salonach kosmetycznych, podkreślając potencjalne ryzyko związane z długotrwałym narażeniem na związki BTEX.
Wydawca
Rocznik
Tom
Strony
97--112
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
autor
- Silesian University of Technology
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
autor
- Institute of Environmental Engineering, Polish Academy of Sciences
Bibliografia
- 1. Amoatey, et al., (2018). Indoor air pollution and exposure assessment of the gulf cooperation council countries: A critical review. Environment International, 121(1), pp. 491–506.
- 2. Błaszczyk, E. et al., (2019). Indoor air quality in urban and rural kindergartens in southern Poland: PM1, PM2.5, PM10, and bacterial air contamination. Environmental Science and Pollution Research, 26(10), 10489–10503. doi: 10.1007/s11869-017-0505-9
- 3. Brągoszewska, E. et al., (2018) Microbiological indoor air quality in an office building in Gliwice, Poland: analysis of the case study. Air Qual. Atmos. Health, 11, 729–740. https://doi.org/10.1007/s11869-018-0579-z
- 4. Brown, R.H., (2000). Monitoring the ambient environment with diffusive samplers: Theory and practical considerations. J. Environ. Monit., 2, 1–9. https://doi.org/10.1039/a906404d
- 5. Carl Roth, https://www.carlroth.com/pl/pl/CoA-SDB-Spezifikationen.
- 6. Dehghani, M. et al., (2018.) Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicology and Environmental Safety, 155, pp. 133–143. DOI:10.1016/j.ecoenv.2018.02.065
- 7. Demirel, G. et al., (2014a). Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: Relationship with indoor/outdoor concentrations and risk assessment. Science of The Total Environment, no. 473–474, pp 537–548. DOI:10.1016/j.scitotenv.2013.12.034
- 8. Central Statistical Office (https://stat.gov.pl/).
- 9. Hazrat, R., (2016). Graded rings and graded Grothendieck groups, London Mathematical Society Lecture Note, Series, 435, https://doi.org/10.1017/CBO9781316717134.
- 10. https://www.google.pl/maps/; https://www.arcgis.com/home/webmap/viewer.html.
- 11. International Agency for Research on Cancer (IARC), (2018). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 120. International Agency for Research on Cancer.
- 12. Janjani, H. et al., (2023). BTEX in indoor air of barbershops and beauty salons: Characterization, source apportionment and health risk assessment. Chemosphere, 345, 140518. https://doi.org/10.1016/j.chemosphere.2023.140518
- 13. Jia, Ch. & Fu, X., (2017). Diffusive uptake rates of volatile organic compounds on standard ATD tubes for environmental and workplace applications. Environments, no. 4, pp. 87. https://doi.org/10.3390/environments4040087
- 14. Kociszewska, K. et al., (2017). Research on carbon occurrence in indoor air of selected universities in Poland. Sci. Rev. Eng. Environ. Sci., 26, 1, 75. DOI: 10.22630/PNIKS.2017.26.1.10
- 15. Kozielska, B. & Kaleta, D., (2021). Assessment of Indoor Benzene and Its Alkyl Derivatives Concentrations in Offices Belonging to University of Technology (Poland). Atmosphere, no. 12(1), pp. 51. https://doi.org/10.3390/atmos12010051
- 16. Kozielska, B. et al., (2020). Investigation of indoor air quality in offices and residential homes in an urban area of Poland. Air Qual. Atmos. Health, 13, 131–141. DOI: 10.1007/s11869-019-00777-7
- 17. Kumar, P., et al., (2023). Critical review on emerging health effects associated with the indoor air quality and its sustainable management. Science of the Total Environment, vol. 872, pp. 162–163. https://doi.org/10.1016/j.scitotenv.2023.162163
- 18. Mainka, A. & Kozielska B., (2016). Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland. Environ. Sci., 3, 4, 858–870. doi: 10.3934/environsci.2016.4.858
- 19. Mainka, A. et al., (2015). PM2.5 in urban and rural nursery schools in Upper Silesia, Poland: trace elements analysis. Int. J. Environ. Res. Public. Health, 12, 7697–711. doi: 10.3390/ijerph120707990
- 20. Majewski, G. et al., (2017a). Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities. Atmosphere, 7, 9, 117. DOI: 10.3390/atmos7090117
- 21. Mendell, M.J., Mirer, A.G., Cheung, K., & Tong, M., (2011). Respiratory and Allergic Health Effects of Dampness, Mold, and Dampness-Related Agents: A Review of the Epidemiologic Evidence. Environmental Health Perspectives, 119(6), 748–756. doi:10.1289/ehp.1002410
- 22. Namieśnik, J. et al., (1992). Indoor air quality (IAQ), pollutants, their sources and concentration levels. Build Environ., 27, 339–356. https://doi.org/10.1016/0360-1323(92)90034-M
- 23. Ordinance of the Minister of Family and Social Policy of 18 August 2023 amending the Ordinance on the maximum permissible concentrations and intensities of factors harmful to health in the working environment.
- 24. OSHA (Occupational Safety and Health Administration) recommendations, https://www.osha.gov/.
- 25. Pastuszka, J.S., (1995). Studies of particulate pollutants in indoor air in Upper Silesia. Ekologia i Zdrowie, 9–10, 1–5.
- 26. Pastuszka, J.S. et al., (2010). Characterization of PM10 and PM2.5 and associated heavy metals at the crossroads and urban background site in Zabrze, Upper Silesia, Poland, during the smog episodes, Environmental Monitoring and Assessment, no. 168(1–4), pp. 613–627. DOI: 10.1007/s10661-009-1138-8
- 27. Rogula-Kopiec, P. et al., (2019). Air pollution of beauty salons by cosmetics from the analysis of suspensed particulate matter. Environmental Chemistry Letters, 17, 1, 551– 558. DOI:10.1007/s10311-018-0798-4
- 28. Rogula-Kozłowska, W., (2014). Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols. Bulletin of Environmental Contamination and Toxicology, no. 93, pp. 493–502. https://doi.org/10.1007/s00128-014-1364-9
- 29. Ronda, J.C. et al., (2013a). Gender inequalities in occupational health related to the unequal distribution of working and employment conditions: a systematic review. International Journal for Equity in Health, no. 12(57).
- 30. Ronda, E., Hollund, B.E., Moen, B.E., & Hilt, B., (2013b). Exposure to volatile organic compounds and health complaints in hairdressing salons. Occupational Medicine, 63(1), 27–32.
- 31. Telejko, M., (2015) Indoor air quality in computer labs. Structure and Environment, 7(4), 194–198.
- 32. Wallace, L.A. et al., (1989). The influence of personal activities on exposure to volatile organic compounds. Environ. Res., no. 50, pp. 37–55. https://doi.org/10.1016/S0013-9351(89)80047-7
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc7aacd5-c0d2-4a95-89a1-7f8752d39d2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.