Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Inteligentne prognozowanie intensywności uszkodzeń automatycznego systemu ochrony pociągów kolei dużych prędkości w Chinach
Języki publikacji
Abstrakty
Intelligent and personalized dynamic maintenance and spare parts configuration of high-speed railway have been the main trend to guarantee the safety capability of trains. In this paper, a new Automatic Train Protection (ATP) system failure rate calculation method is proposed, and the delay time and embedded dimension are determined by C-C algorithm. Then the phase space is reconstructed from one-dimensional time series to high-dimensional space. Based on chaotic characteristics of failure rate, a short-term intelligent forecasting model of failure rate of ATP system is established. The actual failure statistics from 2010 to 2018 are used as samples to train and test the validity of the model. From prediction results, it shows that the proposed chaos prediction model has an accuracy of 99.71%, which is better than the support vector machine model. Through the intelligent prediction of failure rate, this paper solves the maintenance inflexibility and imbalance of supply and demand of spare parts configuration.
Inteligentna i spersonalizowana dynamiczna konserwacja i konfiguracja części zamiennych pociągów kolei dużych prędkości stanowią ostatnio główny trend w zakresie zapewniania bezpieczeństwa pociągów. W niniejszym artykule zaproponowano nową metodę obliczania intensywności uszkodzeń systemu Automatycznej Ochrony Pociągu (ATP), a czas opóźnienia i wymiar zanurzenia określano za pomocą algorytmu CC. Następnie, przestrzeń fazową przekształcono z jednowymiarowego szeregu czasowego do przestrzeni wielowymiarowej. Opierając się na chaotycznych charakterystykach intensywności uszkodzeń, utworzono model krótkoterminowego inteligentnego prognozowania awaryjności systemu ATP. Do uczenia modelu i weryfikacji jego trafności wykorzystano rzeczywiste dane statystyczne dotyczące awarii pociągów z lat 2010–2018. Z wyników prognoz wynika, że proponowany model predykcji, oparty na teorii chaosu, cechuje się dokładnością na poziomie 99,71%, czyli wyższą niż model maszyny wektorów nośnych. Dając możliwość inteligentnej predykcji intensywności uszkodzeń, niniejsza praca rozwiązuje problem braku elastyczności w utrzymaniu ruchu pociągów oraz braku równowagi między podażą a popytem na części zamienne.
Czasopismo
Rocznik
Tom
Strony
567--576
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Haidian, Beijing 100044, China
autor
- State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Haidian, Beijing 100044, China
autor
- Signal & Communication Research Institute China Academy of Railway Sciences Haidian, Beijing 100081, China
autor
- Rail Transit Scientific Research Institution Nanning University Nanning 530200, Guangxi, China
autor
- Rail Transit Scientific Research Institution Nanning University Nanning 530200, Guangxi, China
Bibliografia
- 1. Alpay D, Kipnis A. Wiener Chaos Approach to Optimal Prediction. Numerical Functional Analysis and Optimization 2015; 36(10): 1286-1306, https://doi.org/10.1080/01630563.2015.1065273.
- 2. Blanchard F. Topological chaos: what may this mean. Journal of Difference Equations and Applications 2009; 15(1): 23-46, https://doi.org/10.1080/10236190802385355.
- 3. Cacciola M, Costantino D, Morabito F-C, Versaci M. Soft Computing and Chaos Theory for Disruption Prediction in Tokamak Reactors. International Journal of Modelling and Simulation 2008; 28(2): 165-173, https://doi.org/10.1080/02286203.2008.11442464.
- 4. Cao S-C, et al. Establishing a Flight Load Parameter Identification Model with Support Vector Machine Regression. Journal of Northwestern Polytechnical University 2013; 31(4): 535-539.
- 5. China railway standard. CTCS-2/3 Level Train Control on-board Equipment Maintenance Management Measures 2015; tiezongyun 57.
- 6. Dai A-N, et al. Intelligent control of a grain drying system using a GA-SVM-IMPC controller. Drying Technology 2018; 36(12): 1413-1435, https://doi.org/10.1080/07373937.2017.1407938.
- 7. Esling P, Agon C. Time-Series Data Mining. ACM Computing Surveys 2012; 45(1): 12-34, https://doi.org/10.1145/2379776.2379788.
- 8. Feng X-X, et al. Adaptive Multi-Kernel SVM With Spatial-Temporal Correlation for Short-Term Traffic Flow Prediction. IEEE Transactions on Intelligent Transportation Systems ( Early Access ) 2018: 1-13.
- 9. Frazier C, Kockelman M. Chaos Theory and Transportation Systems. Journal of the Transportation Research Board 2004; 1897: 9-17, https://doi.org/10.3141/1897-02.
- 10. Fu G, et al. Short-term Traffic Flow Forecasting Model Based on Support Vector Machine Regression. Journal of South China University of Technology(Natural Science Edition) 2013; 41(9): 71-76.
- 11. Galar D, Gustafson A, Tormos B, Berges L. Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14 (2): 135-144.
- 12. Ghosh B, Basu B, O'Mahony M. Multivariate Short-Term Traffic Flow Forecasting Using Time-Series Analysis. IEEE Transactions on Intelligent Transportation Systems 2009; 10(2): 246-254, https://doi.org/10.1109/TITS.2009.2021448.
- 13. Guo Y-M, Ran C-B, Li X-L, Ma J-Z, Zhang L. Weighted prediction method with multiple time series using multi-kernel least squares support vector regression. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2013; 15 (2): 188-194.
- 14. Guo Y-M, Wang X-T, Liu C, Zheng Y-F, Cai X-B. Electronic system fault diagnosis with optimized multi-kernel SVM by improved CPSO. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2014; 16 (1): 85-91.
- 15. Jimenez Cortadi A, Irigoien I, Boto F, Sierra B, Suarez A, Ga lar D. A statistical data-based approach to instability detection and wear prediction in radial turning processes. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (3): 405-412, https://doi.org/10.17531/ein.2018.3.8.
- 16. Kozielski M, Sikora M, Wróbel Ł. Decision support and maintenance system for natural hazards, processes and equipment monitoring. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18 (2): 218-228, https://doi.org/10.17531/ein.2016.2.9.
- 17. Liu B-L, et al. An improved PSO-SVM model for online recognition defects in eddy current testing. Nondestructive Testing and Evaluation 2013; 28(4): 367-385, https://doi.org/10.1080/10589759.2013.823608.
- 18. Liu C, Wu A-X, Yin S-H, Chen-X. Nonlinear chaotic characteristic in leaching process and prediction of leaching cycle period. Journal of Central South University 2016; 23(16): 2935-2940, https://doi.org/10.1007/s11771-016-3357-9.
- 19. Ma J-H, Qi E-S, Mo X. Application Study on Reconstruction of Chaotic Time Series and Prediction of Shanghai Stock Index. Systems Engineering-Theory & Practice 2013; 23(12): 86-93.
- 20. Meng Y-Y, Lu J-P, Wang J. Wind Power Chaos Prediction Based on Volterra Adaptive Filter. Power System Protection and Control 2012; 40(4): 90-95.
- 21. Nicolas P-C, Theodore B-T. On-line SVM learning via an incremental primal-dual technique. Optimization Methods & Software 2013; 28(2): 256-275, https://doi.org/10.1080/10556788.2011.633705.
- 22. Qu X, Wang W, Wang W-F, Liu P. Real-time rear-end crash potential prediction on freeways. Journal of Central South University 2017; 24(11): 2664-2673, https://doi.org/10.1007/s11771-017-3679-2.
- 23. Świderski A, Jóźwiak A, Jachimowski R. Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2018; 20 (2): 292-299, https://doi.org/10.17531/ein.2018.2.16.
- 24. Vališ d, Koucky M, Zak L. On approaches for non-direct determination of system deterioration. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14 (1): 33-41.
- 25. Wu H-W, Wang F-Z. Research on Railway Freight Traffic Prediction Based on Maximum Lyapunov Exponent. Journal of the China Railway Soci 2014; 36(4): 8-13.
- 26. Wu X-X. Li-Yorke chaos of translation semigroups. Journal of Difference Equations and Applications 2014; 20(1): 49-57, https://doi.org/10.1080/10236198.2013.809712.
- 27. Yan Z-G, Yao K, Yang Y-X. A novel adaptive differential evolution SVM model for predicting coal and gas outbursts. Journal of Difference Equations and Applications 2017; 23(1-2): 238-248, https://doi.org/10.1080/10236198.2016.1214725.
- 28. Zhang H-B, Sun X-D, He Y-L. Analysis and Prediction of Complex Dynamical Characteristics of Short-term Traffic Flow. Acta Physica Sinica 2014; 63(4): 1-8.
- 29. Zhang Y-M, Wu X-J, Bai S L. Chaotic Characteristic Analysis for Traffic Flow Series and DFPSOVF Prediction Model. Acta Physica Sinica 2013; 62(19): 1-9.
- 30. Zhu L, Yu F-R, Wang Y-G, et al. Big Data Analytics in Intelligent Transportation Syetems: A Survey. IEEE Transactions on Intelligent Transportation Systems 2019; 20(1):383-398, https://doi.org/10.1109/TITS.2018.2815678.
- 31. Zhu Z-H, Weng Z-S. Railway Passenger and Freight Volume Forecasting Based on Chaos Theory. Journal of the China Railway Soci 2011;33(6): 1-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc7a9779-f1e0-40b8-b449-19101bb91bd8