PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bainitic reaction and microstructure evolution in two normalized and tempered steels designed for service at elevated temperatures

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work conventional heat treatment like normalizing (bainitic microstructure) and tempering of the alloys has been performed. The materials used in this study were two steels, one the laboratory prepared experimental low alloy Cr-Mo steel in comparison to typical commercial 10CrMo9-10 steel. The determined carbon concentrations of the residual austenite at the different temperatures of bainite transformation supports the hypothesis that the growth of bainitic ferrite occurs without any diffusion with carbon being partitioned subsequently into the residual austenite. It was found that bainitic reaction has stopped when average carbon concentration of the untransformed austenite is close to the T0 line and supports formation of bainitic ferrite by a shear mechanism, since diffusionless transformation is not possible beyond the T0 curve. Normalized samples were air cooled down to room temperature before tempering at various temperatures in the range of 500-750°C. Samples have been austenitized at 980°C for 0.5 hour air cooled and tempered at 500, 550, 600, 650, 700 and 750°C for 1 hour. After heat treatment, the assessment in the microstructure and phase precipitation was made using the samples prepared for metallographic and transmission electron microscope (TEM) on thin foils analysis. Quantitative X-ray analysis was used to determine the retained austenite content after heat treatment like normalizing and tempering and the total volume fraction of the retained austenite was measured from the integral intensity of the (111)γ and (011)α peaks. The changes observed in the microstructure of the steel tempered at the higher temperature, i.e. 750°C were more advanced than those observed at the temperature of 500°C. Performed microstructural investigations have shown that the degradation of the microstructure of the examined steel was mostly connected with the processes of recovery and polygonization of the matrix, disappearance of lath bainitic microstructure, the growth of the size of M23C6 carbides, and precipitation of the secondary M2C precipitates. The magnitude of these changes depended on the temperature of tempering.
Rocznik
Strony
22--36
Opis fizyczny
Bibliogr. 29 poz., rys., wykr., tab.
Twórcy
  • University of Science and Technology UTP, Mechanical Engineering Faculty, Department of Materials Science and Engineering, Av. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Zheng-Fei Hu, Heat-Resistant Steels, Microstructure Evolution and Life Assessment in Power Plants. Thermal Power Plants. Dr. Mohammad Rasul (Ed.), ISBN: 978-953-307-952-3. (2012) 1-266. Available from: http://www.intechopen.com/books/thermal-power-plants/heat-resistant-steels-microstructure-evolution-and-lifeassessment-in-power-plants.
  • 2. Klueh R. L., Elevated-temperature ferritic and martensitic steels and their application to future nuclear reactors. November 2004. Metals and Ceramics Division, OAK RIDGE NATIONAL LABORATORY, Oak Ridge, Tennessee, ORNL/TM-2004/176. 1-56.
  • 3. Motagi B.S., Ramesh Bhosle, Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium Carbon Steel. International Journal of Engineering Research and Development, 2, 1 (2012), 7-13.
  • 4. Zieliński A., Golański G., Sroka M., Influence of long-term ageing on the microstructure and mechanical properties of T24 steel, Materials Science & Engineering A, 682 (2017) 664–672.
  • 5. Dobrzanski J ., Hernas A., Moskal G., Microstructural degradation in boiler steels: materials developments, properties and assessment. Woodhead Publishing Limited. Chapter 6 (2011) 222-271.
  • 6. Dziuba-Kałuża M., Zieliński A., Dobrzański J., Sroka M.: The evaluation of suitability for operation of low-alloy Cr-Mo and Cr-Mo-V steel welded joints beyond the design work time. Archives of Materials Science and Engineering, 66 1 (2014), 21-30.
  • 7. Sroka M., Zieliński A., Mikuła J., The service life of the repair welded joint of Cr-Mo / Cr-Mo-V. Arch. Metall. Mater., 61 3 (2016), 1315–1320.
  • 8. Zieliński A., Miczka M., Boryczko B., Sroka M.: Forecasting in the presence of microstructural changes for the case of P91 steel after long-term ageing. Archives of Civil and Mechanical Engineering, 16 (2016), 813-824.
  • 9. Jingjie Shen, Huilong Yang, Yanfen Li, Sho Kano, Yoshitaka Matsukawa, Yuhki Satoh, Hiroaki Abe: Microstructural stability of an as-fabricated 12Cr-ODS steel under elevated-temperature annealing. Journal of Alloys and Compounds, 695 (2017), 1946-1955.
  • 10. Shrestha T., Alsagabi S.F., Charit I., Potirniche G.P, Glazoff M. V., Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel. Metals, 5 (2015), 131-149.
  • 11. Kumari R., Das G., Effect of Isothermal Ageing on Microstructure and Mechanical Behavior of 0.5Cr-0.5Mo-0.2V Low Alloy Steel. Journal of Materials & Metallurgical Engineering, 5 3 (2015), 7-14.
  • 12. Taylor Roth Jacobs, Elevated temperature mechanical properties of line pipe steels, A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Masters of Science (Metallurgical and Materials Engineering).
  • 13. Aaronson H.I., Reynolds W.T., Shiflet G.J., Spanos G., Bainite Viewed Three Different Ways. Metall. Trans. A 21A, (1990), 1343-1380.
  • 14. Bhadeshia H.K.D.H., Christian J.W., Bainite in steels. Metall Trans. A, 21A (1990), 767–797.
  • 15. Ławrynowicz Z., Mechanism of bainite transformation in Fe-Cr-Mo-V-Ti-C steel. International Journal of Engineering, 12 (1999), 81-86.
  • 16. Ławrynowicz Z., Barbacki A., Features of Bainite Transformation in Steels. Advances in Materials Science, 2 (2002), 5-32.
  • 17. Bhadeshia H.K.D.H., David S.A., Vitek J.M. and Reed R.W., Stress induced transformation to bainite in Fe-Cr-Mo-C pressure vessel steel. Materials Science and Technology, 7 (1991), 686-698.
  • 18. Dyson D.J., Holmes, B., Effect of alloying additions on the lattice parameter of austenite. J. Iron Steel Inst., 208 (1970), 469-474.
  • 19. Bhadeshia H.K.D.H., Bainite in steels 2nd ed., London, The Institute of Materials, (2001).
  • 20. McLellan, R.B., Dunn, W.W., J.Phys.Chem. Solids., 30 (1969), 2631-2637.
  • 21. Ławrynowicz Z., Ausferritic or Bainitic Transformation in ADI, Proceedings of the 12th International Symposium on Advanced Materials, Paper No: 98, Rawalpindi, Pakistan, ISAM 2011.
  • 22. Ławrynowicz Z.: Affect of cementite precipitation on the extend of bainite transformation in Fe-Cr-C steel. Advances in Materials Science. 11 (2011), 13-19.
  • 23. Ławrynowicz Z., Decarburisation of bainitic ferrite laths and its influence on the microstructure in Fe-Cr-Si-C steel. Advances in Materials Science, 11 2 (2011), 56-64.
  • 24. Hehemann R.F., Kinsman K.R., Aaronson H.I., A debate on the bainite reaction. Metall. Trans., 3 (1972), 1077–1094.
  • 25. Ławrynowicz Z., Affect of decarburisation times of bainitic ferrite laths on the microstructure in Fe-Cr-C steel. Journal of Polish CIMAC, 6 (2011), 127-136.
  • 26. Caballero, F.G., Miller, M.K., Babu, S.S., Garcia-Mateo, C., Atomic scale observations of bainite transformation in a high carbon high silicon steel, Acta Materialia, 55 (2007), 381-390.
  • 27. Ławrynowicz Z., Carbon Partitioning During Bainite Transformation in Low Alloy Steels, Materials Science and Technology, 18 11 (2002), 1322-1324.
  • 28. Ławrynowicz Z., Transition from Upper to Lower Bainite i Fe-C-Cr Steel, Materials Science and Technology, 20 11 (2004), 1447-1454.
  • 29. Ławrynowicz Z., Próba wykorzystania mechanizmu przemiany bainitycznej do modelowania kinetyki i mikrostruktury stali niskostopowych (The attempt of the using of the bainite transformation mechanism to modelling of kinetics and microstructure of the low alloy steels), Wyd. Uczelniane UTP Bydgoszcz, Rozprawy Nr 137, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc6fd497-0980-43b7-89a0-1759f6d3a0c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.