PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low temperature preparation of stabilized aluminium titanate ultrafine powder assisted by the solvothermal treatment process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Niskotemperaturowa preparatyka ultradrobnego proszku stabilizowanego tytanianu glinu wspomaganego procesem obróbki solwotermalnej
Języki publikacji
EN
Abstrakty
EN
Stabilized aluminium titanate (AT) ultrafine powder with the average particle size of 150 nm was prepared at 1000 °C assisted by the solvothermal process, using aluminium nitrate (Al(NO3)3•9H2O) and titanium tetrachloride (TiCl4) as precursor materials, ethanol as solvent, manganese(II) or iron(III) as stabilizer and PEG1000 as additive. The phase transition process of AT dry gel powder and the influence of technological parameters on the synthesis of stable AT superfine powder were studied by DTA-TG, XRD and TEM. The results showed that the amorphous dry gel formed anatase phase first, and then transformed into Al2(1-x)MgxTi1+xO5 solid solution. Magnesium acetate shows better stabilization effect compared with ferric chloride and ferric sulfate. Optimized dosages of magnesium acetate and PEG1000 are 10 mol% and 3 wt%, respectively.
PL
Stabilizowany, bardzo drobny proszek tytanianu glinu (AT) o średniej wielkości cząstek 150 nm został przygotowany w 1000 ° C przy pomocy procesu solwotermalnego, przy użyciu azotanu glinu (Al(NO3)3•9H2O) i czterochlorku tytanu (TiCl4) jako materiałów prekursorowych, etanolu jako rozpuszczalnika, mangan(II) lub żelazo(III) jako stabilizatorów i PEG1000 jako dodatku. Proces przemiany fazowej suchego proszku żelu AT i wpływ parametrów technologicznych na syntezę stabilnego super drobnego proszku AT zbadano za pomocą DTA-TG, XRD i TEM. Wyniki wykazały, że amorficzny suchy żel najpierw utworzył fazę anatazową, a następnie przekształcił się w stały roztwór Al2(1-x)MgxTi1+xO5. Octan magnezu wykazuje lepszy efekt stabilizujący w porównaniu z chlorkiem żelazowym i siarczanem żelazowym. Zoptymalizowane dawki octanu magnezu i PEG1000 wynoszą odpowiednio 10% mol. i 3% wag.
Rocznik
Strony
362--367
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China
autor
  • National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China
  • School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
  • National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China
autor
  • National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen 333001, China
autor
  • School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
autor
  • School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
Bibliografia
  • 1. Bayer, G.: Thermal expansion characteristics and stability of pseudobrookite-type compounds, Me3O5, J. Less Common Metals, 24, 2, (1971), 129-138.
  • 2. Morishima, H., et al.: Synthesis of aluminium titanate-mullite composite having high thermal shock resistance, J. Mater. Sci. Lett., 6, 4, (1987), 389-390.
  • 3. Ohya, Y., Nakagawa, Z.-E., Hamano, K.: Grain-Boundary Microcracking Due to Thermal Expansion Anisotropy in Aluminum Titanate Ceramics, J. Am. Ceram. Soc., 70, 8, (1987), C-184-C-186.
  • 4. Bonhomme-Coury, L., et al.: Preparation of Al2TiO5-ZrO2 mixed powders via sol-gel process, J. Sol-Gel Sci. Techn., 2, 1, (1994), 371-375.
  • 5. Lee, H., Jeong, J., Lee, H.: Preparation of Al2TiO5 from alkoxides and the effects of additives on its properties, J. Mater. Sci., 32, 21, (1997), 5687-5695.
  • 6. Nagano, M., et al.: Sintering behavior of Al2TiO5 base ceramics and their thermal properties, Ceram. Int., 25, 8, (1999), 681-687.
  • 7. Kim, I.: Thermal shock resistance and thermal expansion behavior of Al2TiO5 ceramics prepared from electro fused powders, J. Ceram. Process. Res., 1, 1, (2000), 57-63.
  • 8. Zaharescu, M., et al.: Al2TiO5 Based Ceramics Obtained by Hydrothermal Process, J. Optoelectron. Adv. Mater., 5, 5, (2003), 1411-14.
  • 9. Bueno, S., Moreno, R., Baudín, C.: Reaction sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration, J. Eur. Ceram. Soc., 24, 9, (2004(, 2785-2791.
  • 10. Stanciu, L., et al.: Influence of powder precursors on reaction sintering of Al2TiO5, Scripta Mater., 50, 9, (2004), 1259-1262.
  • 11. Hong, L. V., et al.: Observation of the phase formation in TiO2 nano thin film by Raman scattering, J. Raman Spectr., 36, 10, (2005), 946-949.
  • 12. Jha, S. K., Lebrun, J. M., Raj, R.: Phase transformation in the alumina–titania system during flash sintering experiments, J. Eur. Ceram. Soc., 36, 3, (2016), 733-739.
  • 13. Kim, H. C., et al.: Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature, J. Eur. Ceram. Soc., 27, 2-3, (2007), 1431-1434.
  • 14. Padture, N. P., Bennison, S. J., Chan, H. M.: Flaw-Tolerance and Crack-Resistance Properties of Alumina-Aluminum Titanate Composites with Tailored Microstructures, J. Am. Ceram. Soc., 76, 9, (1993), 2312-2320.
  • 15. Thomas, H., Stevens, R.: Aluminium titanate: a literature review. I: Microcracking phenomena. British ceramic. Transactions and journal, 1989. 88(4): p. 144-151.
  • 16. Kornaus, K., et al.: Synthesis of aluminium titanate by means of isostructural heterogeneous nucleation, J. Eur. Ceram. Soc., 39, 7, (2019), 2535-2544.
  • 17. Tsetsekou, A.: A comparison study of tialite ceramics doped with various oxide materials and tialite-mullite composites: microstructural, thermal and mechanical properties, J. Eur. Ceram. Soc., 25, 4, (2005), 335-348.
  • 18. Violini, M. A., et al.: Low (and negative) thermal expansion Al2TiO5 materials and Al2TiO5-3Al2O3•2SiO2-ZrTiO4 composite materials. Processing, initial zircon proportion effect, and properties, Ceram. Int., 44, 17, (2018), 21470-21477.
  • 19. Ohya, Y., Nakagawa, Z.: Measurement of crack volume due to thermal expansion anisotropy in aluminium titanate ceramics, J. Mater. Sci., 31, 6, (1996), 1555-1559.
  • 20. Jiang, W. H., et al.: Effect of gelation process on preparation of aluminum titanate ultrafine powder by hydrolytic sol-gel method, in Materials Science Forum, Trans Tech Publ., 2013.
  • 21. Zhang, Q., et al.: Low temperature synthesis of ultrafine Al2TiO5 powders by hydrolytic sol-gel method, in Materials Science Forum., Trans Tech Publ., 2016.
  • 22. Korim, T.: Effect of Mg2+ and Fe3+ ions on formation mechanism of aluminium titanate, Ceram. Int., 35, 4, (2009), 1671-1675.
  • 23. Holland, T., Redfern, S.: UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics, J. Appl. Crystall., 1997. 30(1): p. 84-84.
  • 24. Zhang, L.-M., Fang, Q., Shen, Q.: Fabrication and thermal performance of Al2(1-x)MgxTi(1+x)O5, J. Chinese Ceram. Soc., 30, 4, (2002), 451-455.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc6ca533-83fe-49a9-8994-811426a61742
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.