PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Object Classification Using Support Vector Machines with Kernel-based Data Preprocessing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper explores possibility of improving Support Vector Machine-based classification performance by introducing an input data dimensionality reduction step. Feature extraction by means of two different kernel methods are considered: kernel Principal Component Analysis (kPCA) and Supervised kernel Principal Component Analysis. It is hypothesized that input domain transformation, aimed at emphasizing between-class differences, would facilitate classification problem. Experiments, performed on three different datasets show that one can benefit from the proposed approach, as it provides lower variability in classification performance at similar, high recognition rates.
Słowa kluczowe
Twórcy
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
  • Institute of Applied Computer Science, Lodz University of Technology
autor
  • Institute of Applied Computer Science, Lodz University of Technology
Bibliografia
  • [1] Barshan, E., Ghodsi, A., Azimifar, Z., Jahromi, M.Z. (2011). Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition, 44(7), 1357-1371
  • [2] Baudat, G., Anouar, F. (2003). Feature vector selection and projection using kernels. Neurocomputing, 55(1), 21-38
  • [3] Burges, C.J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167
  • [4] Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine learning, 46(1-3), 131-159
  • [5] Cristianini, N., Shawe-Taylor, J. (2000). An introduction to support vector machines (and other kernel-based learning methods). Cambridge University Press
  • [6] Dalal, N., Triggs, B. (2005, June). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 886-893). IEEE
  • [7] Hofmann, T., Schölkopf, B., Smola, A.J. (2008). Kernel methods in machine learning. The annals of statistics, 1171-1220
  • [8] Kim, K.I., Jung, K., Park, S.H., Kim, H.J. (2002). Support vector machines for texture classification. IEEE transactions on pattern analysis and machine intelligence, 24(11), 1542-1550
  • [9] Lichman, M. (2013). UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California. School of Information and Computer Science, 213
  • [10] Mika, S., Ratsch, G., Weston, J., Schölkopf, B., Müllers, K. R. (1999, August). Fisher discriminant analysis with kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. (pp. 41-48). IEEE
  • [11] Murase, H., Nayar, S.K. (1995). Visual learning and recognition of 3-D objects from appearance. International journal of computer vision, 14(1), 5-24
  • [12] Müller, K. R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V. (1999). Using support vector machines for time series prediction. Advances in kernel methods-support vector learning, 243-254
  • [13] Rangwala, H., Karypis, G. (2005). Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics, 21(23), 4239-4247
  • [14] Schölkopf, B., Smola, A.J. (2002). Learning with Kernels. MIT Press, Cambridge, MA
  • [15] Schölkopf, B., Smola, A., Müller, K.R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319
  • [16] Song, L., Smola, A., Gretton, A., Bedo, J., Borgwardt, K. (2012). Feature selection via dependence maximization. Journal of Machine Learning Research, 13(May), 1393-1434
  • [17] Wang, M., Sha, F., Jordan, M. I. (2010). Unsupervised kernel dimension reduction. In Advances in Neural Information Processing Systems (pp. 2379-2387)
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc6c8195-f48a-48d8-a36b-c9053a7aa2c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.