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Abstract 
 

The paper is proposing a methodology for assessing the time-criticality in the scope of a crisis resulting from a 

cascade of disruptions of a set of Critical Infrastructures (CIs). The success of the management of the crisis 

depends on taking the good decisions and undertaking the corresponding actions at the good timing. Identifying 

time intervals for decisions and actions requires dynamic models capable to assess the crisis time evolution. 

While, measuring the “criticality” of different time-intervals requires the use of suitable metrics. 

Based on previous works for modelling cascade of CIs’ disruptions incorporating CIs dependency and 

vulnerability, the authors propose a methodology to assess the time-criticality and propose the appropriate 

metrics. 

The methodology is based on the idea of comparing the time-profile of a given cascade of disruptions between 

two configurations: unstressed and stressed CIs. The CIs become stressed under the action of a threat and 

combined with the dependency between CIs. The unstressed configuration represents a risk-noise.  

Two metrics are proposed in order to carry on the comparison between the time-profiles of the stressed and the 

unstressed CIs. The proposed metrics are: the time to attend 90% of the asymptotic occurrence probability and 

the time to attend the most probable occurrence rate, describing the cascade likelihood.  

An academic case is presented in order to demonstrate the applicability of the methodology and illustrate some 

interesting features.  

 
1. Introduction 
 

The paper is proposing a methodology for assessing 

the time-criticality in the scope of a crisis resulting 

from a cascade of disruptions of a set of Critical 

Infrastructures (CIs). The success of the management 

of the crisis depends on taking the good decisions 

and undertaking the corresponding actions at the 

good timing. Time and timing are then crucial, 

especially, if the cascade of disruptions may lead to 

hazardous consequences under the action of a given 

threat. The existing dependencies between CIs may 

even amplify the severity of the hazardous 

consequences of the cascade. 

Identifying time intervals for decisions and actions 

requires dynamic models capable to assess the crisis 

time evolution. While, measuring the “criticality” of 

different time-intervals requires the use of suitable 

metrics. 

Based on previous works for modelling cascade of 

CIs’ disruptions incorporating CIs dependency and 

vulnerability, the authors propose a methodology to 

assess the time-criticality and propose the 

appropriate metrics. 

The methodology is based on the idea of comparing 

the time-profile of a given cascade of disruptions 

between two configurations: unstressed and stressed 

CIs. The CIs become stressed under the action of a 

threat combined with the dependency between CIs. 

The unstressed configuration represents a risk-noise.  

Two metrics are proposed in order to carry on the 

comparison between the time-profiles of the stressed 

and the unstressed CIs. The proposed metrics are: the 

time to attend 90% of the asymptotic occurrence 

probability and the time to attend the most probable 

occurrence rate, describing the cascade likelihood.  
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The paper is structured, after the above introduction, 

in three parties: 

 A first part treating the concept of sequential 

events and their mathematical modelling. It is 

merely a succinct review limited to the restricted 

scope of interest of the paper, section 2.  

 The second part, section 3, recall the basis of the 

mathematical models used here and borrowed 

from previous work. It describes the methodology 

and the corresponding basic models: the 

unstressed CIs and the stressed CI under the 

actions of threats and the CIs independencies. The 

cascade likelihood is equally recalled, measured 

with its: occurrence probability and occurrence 

rate. The concepts: “time to attend 90% of the 

asymptotic probability” and “time to attend the 

most probable occurrence rate” are introduced. 

 In the third part, an academic case is presented in 

order to demonstrate the applicability of the 

methodology and illustrate some interesting 

features.  

 

It may be helpful to underline that the main target of 

this work is to propose a methodology to measure the 

time criticality and its corresponding metrics.  

Finally, although the paper focuses on disruptions 

following Stochastic Poisson Processes (SPP), the 

methodology is extendable to other stochastic 

processes. The focus on PSP was motivated by the 

avoidance of useless numerical complexity given our 

main target mentioned above. 

 

2. Sequential events 
 

A set of sequential disruptions is treated as a 

sequence of some ordered events. Many techniques 

have been developed in systems reliability and safety 

assessments to carry on “sequential failures 

analysis”, such as: “Event trees” [1,2,3], “Fuzzy 

approaches” [4], “Dynamic Fault Trees” with 

“Priority Gates” [5,6,7] or without [8], Petri Net and 

Markov Chain Process [9] or “Monte-Carlo 

Simulation” [10]. The problem is also known as 

cascade modelling. 

In cascade modelling, one would often like to 

determine the cascade likelihood using metrics such 

as: “occurrence probabilities” and/or probability 

distributions. Other probabilistic quantities can also 

be of interest, depending on the case. Other 

probabilistic quantities are, e.g., “mean time to….”. 

The paper uses a model that describes cascades of 

disruptions using an integral equation, [11,12]. The 

integral equation admits an analytical solution if the 

occurrence probability distribution functions (pdf) of 

the disruptions obey Stochastic Poisson Processes 

(SPP). The model takes into account the 

“vulnerability to the threat” and the “CIs’ 

dependencies” using time constant factors called: 

“vulnerability stress factor” and “dependent stress 

factor”, respectively, [11]. If the involved disruptions 

do not follow SPP, the integral equation will admit 

no analytical solution. Still, the integral equation can 

be determined using numerical techniques such as: 

Monte-Carlo simulation. 

The above mentioned model is used in this paper in 

order to illustrate how to assess the criticality of 

time-intervals within the time-line of the decision 

making and actions undertaken processes.  

 

3. Methodology description 
 

The fundamental idea is to admit that CI disruptions 

are random and systemic when the CI is not under 

the action of a threat and is isolated from the other 

CIs. Under the stress resultant from a given threat 

actions and because the dependency of the CI on the 

other CIs, the occurrence of the individual 

disruptions increases.  

The considered CIs are then all coherent in the sense 

of the reliability theory. In other words, the stressed 

CI can’t show but higher disruption likelihood.  

The model described in [11,12] is based on three 

basic hypotheses. The first hypothesis is that the 

vulnerability of a given CI under the action of a well-

defined threat is described by a parameter acting on 

the systemic disruption rate. The second hypothesis 

is that the dependency of the disruptions between CIs 

can also be described using another parameter acting 

on the systemic disruption of the CIs under 

consideration. The third hypothesis is that both 

parameters are independent of each other. They can 

be time-dependent or constant. These parameters are 

called “vulnerability stress factor” and “dependency 

stress factor”. 

We recall that the sequence of distributions is 

defined by a given number of individual disruptions 

occurring in a well-defined chronological order.  

There are two possible ways to phenomenologically 

express the likelihood as a function of the CI’s stress 

level: either to use the disruption occurrence 

probability, or the disruption occurrence rate. Both 

lead to similar evaluations if they are well-calibrated. 

However, they are not similar in their formal 

mathematical expressions. 

The model described in the paper integrates the stress 

of a CI in the disruption occurrence rate. First, one 

should treat the unstressed isolated CIs, as following.  

 

3.1 Systemic disruptions 
 

Although, we should integrate the stresses generated 

by the threats and the dependencies between the CIs, 
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we should at first understand the disruptions of the 

unstressed CI’s and their dynamics. 

In the absence of identified threats, an isolated CI 

from all others CIs can still prove random disruptions 

initiated by different systemic mechanisms and 

expressed by different phenomenological failure 

modes. For this isolated CI, disruptions will be called 

“systemic”. The systemic disruptions depends, then, 

on: the design of the CI, the materials used in its 

structures and the operational conditions of the CI.  

Systemic disruptions occurrence is a stochastic 

phenomenon. Accordingly, the disruption occurrence 

can be described using an adequate: occurrence 

probability functions, occurrence probability density 

functions or disruption occurrence rates. We will be 

using occurrence rates in this paper.  

The disruption occurrence rate of a given disruption 

mode in an isolated CI, )(i , will be called a 

systemic disruption occurrence rate. The isolated CI 

will be described as unstressed CI. 

However, our interest is to describe how dependency 

and vulnerability may be affecting the systemic 

disruption rates when the CI becomes stressed as a 

result of the CIs dependencies (§3.2) and the threats 

actions (§3.3).  

 

3.2 Dependency  
 

In order to describe a cascade of disruptions, the 

dependencies between CIs should be considered. In 

the model given in [11], a disruption dependency 

matrix (D-D matrix) is established describing the 

existing dependencies between a given set of 

identified CIs. It is obvious that the set of considered 

CIs depends on the mode of the disruptions 

considered. 

The dependency of the disruption occurrence of a 

given CI “ i ” on the disruption occurrence of another 

CI “ j ” is described by a factor ij  that is called the 

CI disruption occurrence dependency stress factor. 

The disruption occurrence rate )( ji  of a given CI “

i ” given the disruption occurrence of the CI “ j ” is 

then described by: 

 

   )( ji  = )1)(( iji                    

 

Where, )(i  is the systemic disruption occurrence 

rate of the CI, “ i ”, and ij  is its dependency stress 

factor regarding the disruption occurrence of the CI, 

“ j ”. 

A disruption dependency is “directional” if the 

disruption of the CI “ j ” impacts on the disruption of 

the CI “ i ” and the inverse is not true. In that case, 

one has 0ij  and 0ji . If the dependency is not 

directional, it is called “interdependency” rather than 

“dependency”, given ),,0( kllk   and, generally, 

)( jiij   .  

If the CI, “ i ”, is acted upon by the disruptions of 

other M  CIs, its effective disruption rate 
M

i

,0  will, 

then, be given by: 

 

   
M

i

,0  = 











M

j

iji

1

)1()(                   

 

In this model, the disruptions of many CIs act 

independently on the CI. We have not considered the 

possibility of a compound damage mechanisms. 

Considering independently the impact of each other 

disruption gives a conservative estimation of the 

effective disruption rate. 

 

3.3 Vulnerability 
 

The term “Vulnerability” is used here to describe the 

dependency between a well-defined threat and the 

occurrence of a disruption mode of a given CI. A CI 

does not react to all threats in the same manner. The 

stochastic disruption of the CI is dependent on the 

threat specifications. In the used model, from [11], a 

vulnerability matrix is established for each identified 

CI disruption mode and corresponds to a well-

specified set of threats. It is obvious that the set of 

the involved threats depends on the location of the 

CI. The threat is generally specified by its: intensity, 

magnitude, likelihood, locality and dynamics. 

The vulnerability of a given CI “ i ” to a well-defined 

threat “ j ” will be described using a vulnerability 

stress factor “ ij ”. The disruption occurrence rate 

)( ji  of a given CI “ i ” under the action of the 

threat “ j ” will then be given by, [11]: 

 

   )( ji  = )1)(( iji                  (1) 

 

Where, )(i  is the systemic disruption occurrence 

rate of the CI, “ i ”, and “ ij ” is its vulnerability 

stress factor regarding the threat, “ j ”. The stress 

factor “ ij ” is a positive parameter and can generally 

be a time-function. 

If the CI, “ i ”, is acted upon by multiple N  threats, 

its effective disruption rate 
0,N

i  will, then, be given 

by: 
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0,N
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0,N

i  : is the effective disruption occurrence rate.   

In the presented model, threats act on the same CI 

independently. We have not considered the 

possibility of a compound damage mechanisms. 

Considering independently the vulnerability of each 

threat gives a conservative estimation of the effective 

disruption rate. Modelling the CIs’ dependencies will 

follow a similar logical scheme as it is shown in the 

following.  

 

3.4 Multi-threat & multi-dependency 
 

In a complex case, where there are multi-threat 

actions and many dependent CIs, the overall 

effective disruption rate 
MN

i

,  will be given by, [11]: 
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i
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Where N  refers to the number of the simultaneous 

acting threats and M  refers to the number of the 

dependent CIs. 

 

3.5 Disruption occurrence likelihood 
  

Let T  be a well-defined cascade of disruptions, 

occurs if and only if some discrete and independent 

disruptions ie  occur in a well-defined chronological 

order  neeee  ...321 . The cascade of 

disruptions T  gives, consequently, place to a sever 

accident or a major crisis. The corresponding 

occurring instants of the elementary disruptions are 

 n ,...,,, 321 , where  ntttt  ...321 . Each 

of these instances  ntttt ,...,,, 321  has its distribution 

probability density function (pdf). The first 

disruption event is 1e  and the last is ne . The 

probability )(tpn  that the major crisis T  happens 

within the interval [0,t] is, then, given by, [13]: 

 

)(tpn  = 
t

d
0

111 )(  * 
t

d

1

222 )(


 *…*   




t

nnn

n

d

1

)(


   (6) 

where, i  are the probability density functions (pdf) 

characterizing the occurrence instances of events ie . 

Whatever the type of these density probability 

functions, the integral in Eq.(6) can hopefully be 

solved in many cases.  

It can, generally, be solved: numerically, e.g., using 

Monte-Carlo Simulation (MCS). However, there 

exists an analytical solution if i  obeys a Poisson 

probability density function, [13]. 

The only focus of this paper is not the model itself, 

but the methodology using it in order to introduce the 

concept of time-criticality and to assess it in a 

decision making process.  

Accordingly, we will consider the case of time-

constant disruption occurrence rates and time-

constant stress factors. It produces an exact analytical 

solution which is very interesting in illustrating the 

main target of our work and to avoid all numerical 

complexity relative to the integral. An exact solution 

of the integral equation of a given cascade of 

disruption has been developed and commented in 

[13]. It has the following form: 

   )(tpn  = 


 
 

n

j

t
n

j

n

jnl

l

eC
1

)(

)1(* 1
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  (7) 

 

Each event ie  is defined by a constant occurrence 

rate i , {  ni ,...,2,1 } and the coefficient 
1

1

iC  is 

given by: 
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                                                   (8)  

    ij ,...,2,1 , and  ni ,...,2,1  

 

where, 
1

1C  = 1. 

 

The disruption occurrence rates i , in Eq.(7)(8), are 

the systemic ones if there are neither threats nor 

dependency. Otherwise, the disruption occurrence 

rates i , are the stressed disruption rates, as 

determined above. 

 

4. A study-case 
 

The considered situation is shortly described as 

following. An aging dam is located in a well-defined 
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populated area. The dam is regulating the flow of a 

river thanks to a large retention lac behind.  

If the water level in the lac reaches a well-defined 

alarm-level-1, a nearby water pumping station starts 

up automatically to evacuate the water excess to a 

small emergency retention area far from the lac, 

provisionally. That would allow to stabilize the water 

level below the alarm-level-1. If the water level 

could not be stabilized and reaches alarm-level-2, the 

risk of losing the dam’s structure integrity becomes 

significant. Subsequently, the population in the area 

should be evacuated within 24-36 hours. The 

hypothetical crisis scenario examines the situation in 

case of an unexpected torrential rains combined with 

the flooding of the river. Given the threat “torrential 

rain and flood”, the crisis scenario is composed of 

four basic “disruptions”, as following:  

 Disruption 1d : loss of electricity supply from the 

grid to the pumping station. 

 Disruption 2d : loss of the water pumping station. 

That covers the loss of the emergency local 

electrical supply (a large diesel unit), the loss of 

automatic start up system and other systemic 

mechanical failure modes of the pumping unites. 

 Disruption 3d : loss of the dam structure integrity. 

That covers all cracks with sizes larger than a 

critical value and/or the full collapse of the 

structure. 

 Disruption 4d : failure to evacuate the population 

out of the disaster area. That covers: the failures of 

the population alert systems (media and SMS), the 

unavailability of emergency resources, the loss of 

accessibility to the evacuation meeting points and 

the loss of transportation capabilities. It includes 

systemic, humans and organizational failure 

modes. 

We are interested in the period of time 24-36 hours 

from the moment when the water level behind the 

dam reaches alarm-level-2. This is the period 

necessary for the evacuation of the population from 

the exposed area. Starting from this instance when 

the threat became active. 

We are considering a hypothetical major crisis 

occurs when four disruptions  4321 ,,, dddd  occur in 

the mentioned order. The systemic occurrence rates 

of the elementary disruptions are constant and having 

the following values: 
410  /h, 

310*5 
 /h, 

210*5.2 
 /h, 

110*25.1 
 /h, respectively. Thus, 

they are following SPPs. 

The concerned CIs could be vulnerable to the given 

threat and, to different extends, can be dependent on 

each other.  

Five stressed situations will then be examined and 

are mentioned below. 

 Unstressed referential case (#0): no vulnerability 

to the threat and no dependencies. Disruptions 

may happen on a systemic random basis and in the 

given order  4321 dddd  . Services 

supply losses occur in the order that produces the 

crisis just by the systemic occurrence of each 

event in the cascade. This possibility is a 

background noise and exists whether the threat is 

active or not and whether the CI’s are dependent 

or not. The only way to decrease its likelihood is 

to redesign the whole CI systems.  

 Stressed case (#1): only 4d  is vulnerable to the 

threat and there is no dependency. The 

vulnerability stress factor is equal to 1.5. The 

threat intensity is judged moderate.  

 Stressed case (#2): all  4321 ,,, dddd  are equally 

vulnerable to the threat and there is no 

dependency. The vulnerability stress factors are all 

equal to 1.5. The threat intensity is judged 

moderate.  

 Stressed case (#3): all  4321 ,,, dddd  are equally 

vulnerable to the threat and there is no 

interdependency. The vulnerability stress factors 

have uniformly increased and equal to 10. That 

may express high vulnerability of the CIs to that 

kind of threats or a threat with a very high 

intensity.  

 Stressed case (#4): all  4321 ,,, dddd  are equally 

vulnerable to the threat. The vulnerability stress 

factors are all equal to 1.5. The threat intensity is 

judged moderate. Disruptions 3d  and 4d  show 

dependency on 2d  and their dependency stress 

factors are 0.8 and 0.4, respectively. Disruption 

4d  is dependent on 3d  with a dependency stress 

factor equal to 0.4. [ 4.0,4.0,8.0 434232  

] 

The time profiles of the occurrence probability and 

of the occurrence rates are assessed over a period of 

time equal to 80 hours starting from the moment 

when the water level behind the dam attends the 

alarm-level-2. We use the time interval to reach 90% 

of the asymptotic occurrence probability as a 

characteristic figure. The 90% of the asymptotic 

occurrence probability will be called the reduced 

asymptotic probability (RAP) and the time to attend 

it is called TTA-ARP. Theoretically, the asymptotic 

values are attended when t  which is not a 

practical measure in taking decisions.  

Regarding the occurrence rates, we use the most 

probable value of the occurrence rate (MPR) as a 
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characteristic figure and the time to attend it will be 

referred to as TTA-MPR. 

The criticality of time to decide and/or to react will 

be measured using a metric based on the cascade 

occurrence rate. While, the cascade occurrence 

probability itself will be used to measure the cascade 

occurrence likelihood. 

The methodology we propose distinguishes clearly 

between: 

 The cascade occurrence probability: is the matric 

to be used to measure the likelihood of the 

cascade,  

 The cascade occurrence rate: that will be used to 

elaborate a metric to measure the criticality of the 

time to decide and/or to react.  

The methodology uses two formal criteria to help in 

decision making and crisis management. The details 

are presented and commented in the following 

sections. 

 

4.1 Unstressed reference case (#0) 
 

The CIs are not vulnerable to the threat and the CIs’ 

are not dependent. The likelihood of this cascade of 

disruptions is the following: 

 The occurrence probability of the cascade is time 

dependent. It attends the ARP value of 615.3 e  

after 46 hours, Figure 1. 

 The occurrence rate of the cascade is also a time 

dependent function. It attends its MPR value 

713.1 e  after 21 hours, Figure 2. 

The systemic occurrence of this cascade of 

disruptions may result inacceptable consequences. 

Therefore the crisis managers would be interested in 

identifying the likelihood of the situation and its 

evolution with the time. Assessing this background- 

risk is useful in measuring the “time criticality” for 

deciding and acting during the crisis, as will be 

explained in the following. 

Given that the most probable value of the cascade 

occurrence rate, the background risk-noise, is about 
710  and occurs around 21 hours, one may propose 

the following classification based on three classes, 

Table 1: 

 Class 3 – high: the occurrence arte is almost one 

decade around the most probable value of the 

noise risk [
710 ]. This is the case between 4 

hours and 60 hours from the start of the active 

phase of the threat. 

 Class 2 – medium: the occurrence rate is one 

decade less than in class 1,  78 10,10 
. This is the 

case in two intervals: from 1h to 4 hours and from 

60 hours to 85 hours. 

 Class 1 – low: the occurrence rate is one decade 

below class 2,  810 . This is the case before 1 

hour and after 85 hours, in the unstressed case 

(background-risk). 

The unstressed case serves in establishing the scale 

of criticality to be used in assessing the stressed 

cases representing crisis situations. Four hypothetical 

crisis situations are presented in the following. They 

are synthetized in Table (1) and Table (2), as well. 

 

4.2 Stressed case #1 

 

The stressed case #1 consider the vulnerability   of 

the four modes of disruption given above is taken in 

to account. The vulnerability stress factors are 0, 0, 0 

and 1.5 for the disruption modes  4321 ,,, dddd  

under the action of the considered threat, 

respectively. Only, the disruption mode  4d  is 

vulnerable to the given threat with a stress factor 

equal to 150%, i.e. it is occurrence rate is increased 

by factor 2.5 (1+1.5=2.5). 

Accordingly, the stressed occurrence rates are, 

respectively: 
410  /h, 

310*5 
 /h, 

210*5.2 
 /h, 

110*125.3 
 /h. The likelihood of this cascade of 

disruptions is as following: 

 The occurrence probability of the cascade is time 

dependent. It attends its ARP value of 78.2 e  

after 20 hours, Figure 1. 

 The occurrence rate of the cascade is also a time 

dependent function. It attends its MPR value 

84.2 e  after 9 hours, Figure 2. 

It is interesting to notice that although 4d is 

vulnerable to the threat, the occurrence probability of 

the cascade is diminished by a decade and the crisis 

spends shorter time in the classes of high likelihood 

(red) and medium likelihood (yellow).  

This situation can be considered in two contradicting 

manners, regarding the cascade likelihood: 

 A comfortable manner because the cascade 

occurrence probability (likelihood) is lowered. So, 

this cascade of disruptions is less probable. 

Besides, the periods of time when the cascade 

attends its highest likelihood (high and medium) 

are short (20-4=16h). 

 Another uncomfortable manner regarding these 

short hot periods. This hot period may not be long 

enough to decide and take the appropriate actions 

if the cascade occurs instead of its low likelihood.  

It is worth underlining that the moderately stressed 

CIs resulted in a less likely crisis. But if the crisis 

occurs, time to decide and react is shorter. 
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4.3 Stressed case #2 
 

All disruptions  4321 ,,, dddd  are equally vulnerable 

to the threat and have vulnerability stress factor equal 

to 1.5. They show the same vulnerability regarding 

the considered threat. 

Accordingly, the stressed occurrence rates are  

45.2 e  /h, 225.1 e  /h, 
210*25.6 
 /h, 

110*125.3 
 /h.  

The likelihood estimations of this cascade of 

disruptions are as following: 

 The occurrence probability of the cascade is time 

dependent. It attends its RAP value of 612.3 e  

after 18 hours, Fig.(1). 

 The occurrence rate of the cascade is also a time 

dependent function. It attends its MPR value of 

78.2 e  after 8.5 hours, Fig.(2). 

The interest of this case is that all occurrence rates 

increase by factor 1.5. In spite of this increase, 

likelihood of the cascade is almost similar to the 

unstressed case. The two differ in: 

 The ARP is attended after 18.5h rather than 44h in 

the unstressed case. 

 The MPR is attended at 8.5h rather than 21h in the 

unstressed case.  

Case#2 has a similar likelihood to the unstressed 

case, but it has shorter times to decide and react. It 

has a faster dynamic. 

 

4.4 Stressed case #3 
 

All disruptions  4321 ,,, dddd  are equally vulnerable 

to the threat and have vulnerability stress factor equal 

to 10. That can be understood either as the threat is 

considered of higher intensity or the CIs have more 

vulnerability to the threat. 

 The occurrence probability of the cascade is time 

dependent. It attends its RAP value of 612.3 e  

after 4 hours, Fig.(1). 

 The occurrence rate of the cascade is also a time 

dependent function. It attends its MPR value of 

624.1 e  after 2 hours, Fig.(2). 

Case #3 is close to case #0 but with significantly 

faster dynamics. 
 

4.5 Stressed case #4 
 

All disruptions  4321 ,,, dddd  are equally vulnerable 

to the threat and have vulnerability stress factor equal 

to 1.5. The threat is considered of moderate intensity 

similar to case #2. Dependencies between disruptions 

are considered. Disruptions 3d  and 4d  show 

dependency on 2d  and their dependency stress 

factors are 0.8 and 0.4, respectively. Disruption 4d  

show dependency on 3d  with a dependency stress 

factor equal to 0.4. [ 4.0,4.0,8.0 434232   ] 

 The occurrence probability of the cascade is time 

dependent. It attends its RAP value of 632.8 e  

after 17 hours, Figure 1. 

 The occurrence rate of the cascade is also a time 

dependent function. It attends its MPR value of 

700.8 e  after 7.8h, Figure 2. 

 

The occurrence probability is higher than in case #0 

(and all the other cases). Its dynamic behaviour is 

faster than in case #1 but of the same order as the 

three other cases. 

 

5. Conclusions 
 

Based on a dynamic model describing the cascade of 

disruptions, a methodology is proposed to measure 

the criticality of time to take decisions and actions in 

crises situations.  

A methodology is proposed and can briefly be 

described as based on: 

 The incorporation of the vulnerability and the 

dependency in the disruption occurrence rate.  

 The systemic cascade, corresponding CIs are 

unstressed, is used as a referential to establish a 

criticality grid, Table 1. 

 The dynamic of a cascade (stressed and 

unstressed) is characterized by its occurrence 

probability and its occurred rate and their time-

evolution profiles. 

 The occurrence probability is used to measure the 

cascade likelihood. 

 The occurrence rate time-profile is a good 

measure of the cascade dynamic. It is used to 

measure the time-criticality regarding decision and 

action making.  

Using exact dynamic models to assess cascade 

reveals some interesting effects: 

 The likelihood of a given cascade does not 

necessarily increasing with the threat intensity, in 

spite of the individual increase of the likelihood of 

the events composing the cascade.  

 That is why analyst should not focus on only one 

cascade scenario but on the set of all possible 

scenarios.  

 Schematically, higher are the threat intensity 

and/or the CIs dependency, faster goes the 

dynamic of the cascade.  

The methodology is limited by the inherent limits of 

the models it uses, [11, 12, 13], i.e.: 
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 The capability to describe CIs disruptions using 

the appropriate stochastic process, “probability 

distribution function, pdf”.  

 The degree of exactitude of the hypothesis that 

different dependencies between CIs are not 

interacting. It is too conservative. 

 The degree of exactitude of the hypothesis that 

Multi-threats CIs are not interacting. It is too 

conservative. 
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Figure 1: Time profile of the cascading occurrence probabilities 

 

 
Figure 2. Time profile of the cascading occurrence rates 

 

 

Table 1. The classification of the criticality according to the occurrence rate.  

Cat. Likelihood 
Occurrence 

rate 

Time interval (hours) 

Case #0 Case #1 Case #2 Case #3 Case #4 

1 Low 810  
0 - ~4 h 

60 -  h 

0-~4 h 

20-  h 

0 – 1 h 

18 -   h 

1 – 5 h 

8 -   h 
30 -   h 

2 Medium 78 1010    
4-15h 

27-60h 
4-20 h 

1 – 3 h 

18 – 28 h 
5 – 8 h 

0 – 2 h 

20 – 30 h 

3 High 710  15-27h ---- 3 – 18 h ---- 2-20h 

 

Table 2. The occurrence probability and the occurrence rate characteristics.  

 As. Prob.  RAP 
TTA. RAP 

(h) 
MPOR 

TTA MPR 

(h) 

Case #0 3.46e-6 3.11e-6 44 1.13e-7 20 

Case #1 3.16e-7 2.84e-7 20 2.35e-8 9 

Case #2 3.47e-6 3.12e-6 18.5 2.81e-7 8.5 

Case #3 3.44e-6 3.12e-6 4 1.24e-6 2 

Case #4 9.25e-6 8.32e-6 17 8.00e-7 7.8 
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