PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality monitoring of hybrid welding processes: A comprehensive review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid welding processes have gained significant attention due to their high efficiency and exceptional welding properties. However, there are still significant technological challenges in achieving consistent quality and suppressing welding defects. To overcome this challenge, researchers have focused on the integration of visual analysis techniques, numerical simulation techniques, and advanced technologies such as artificial intelligence/machine learning (AI/ML) and digital twins. This comprehensive review synthesizes current knowledge on quality monitoring in hybrid welding, encompassing an overview of hybrid welding processes, quality assurance, monitoring techniques, key performance indicators, and advancements in monitoring techniques. Furthermore, the review highlights the integration of sensor data with AI/ML algorithms and digital twin technologies, enhancing the capabilities of quality monitoring systems. Notably, the review emphasizes the incorporation of artificial intelligence (AI) and digital twin technologies into quality monitoring frameworks. Artificial intelligence/Machine learning enables real-time analysis of welding parameters and defect detection, while digital twins offer virtual representations of physical welding processes, facilitating predictive maintenance and optimization. The findings underscore the crucial role of sensor technology, AI/ML, and digital twin integration in enhancing defect detection accuracy, improving welded joint quality, and control in hybrid welding. In addition to improving the quality of welded joints, this integration paves the way for further developments in welding technology.
Rocznik
Strony
833--861
Opis fizyczny
Bibliogr. 131 poz., rys., tab.
Twórcy
  • Faculty of Automatic Control, Electronics and Computer Science, Department of Measurements and Control Systems, Silesian University of Technology, 44-100 Gliwice, Poland
  • Faculty of Automatic Control, Electronics and Computer Science, Department of Measurements and Control Systems, Silesian University of Technology, 44-100 Gliwice, Poland
Bibliografia
  • [1] W.M. Steen and M. Eboo: Arc augmented laser welding. Metals Construction, 2(7), (1979), 332-335.
  • [2] J. Zhou, H.L. Tsai and P.C. Wang: Hybrid laser-arc welding of aerospace and other materials. In Welding and Joining of Aerospace Materials, Elsevier, 2012, 109-141.
  • [3] Q. Pan, M. Mizutani, Y. Kawahito and S. Katayama: High power disk laser-metal active gas arc hybrid welding of thick high tensile strength steel plates. Journal of Laser Applications, 28(1), 2016. DOI: 10.2351/1.4934939
  • [4] Y. Zhang, D. You, X. Gao, N. Zhang and P.P. Gao: Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates. Journal of Manufacturing Systems, 51 (2019), 87-94. DOI: 10.1016/j.jmsy.2019.02.004
  • [5] Y. Zhang, D. You, X. Gao, C. Wang, Y. Li and P.P. Gao: Real-time monitoring of high-power disk laser welding statuses based on deep learning framework. Journal of Intelligent Manufacturing, 31 (2020), 799-814. DOI: 10.1007/s10845-019-01477-w
  • [6] J. Yu, H. Lee, D-Y. Kim, M. Kang and I. Hwang: Quality assessment method based on a spectrometer in laser beam welding process. Metals, 10(6), (2020). DOI: 10.3390/met10060839
  • [7] S.E. Nielsen: High power laser hybrid welding-challenges and perspectives. Physics Procedia, 78 (2015), 24-34. DOI: 10.1016/j.phpro.2015.11.014
  • [8] X. Gao, L. Wang, D. You, Z. Chen and P.P. Gao: Synchronized monitoring of droplet transition and keyhole bottom in high power laser-mag hybrid welding process. IEEE Sensors Journal, 19(9), (2019), 3553-3563. DOI: 10.1109/JSEN.2019.2893120
  • [9] C. Angeloni, M. Francioso, E. Liverani, A. Ascari, A. Fortunato and L. Tomesani: Laser welding in e-mobility: process characterization and monitoring. Lasers in Manufacturing and Materials Processing, 11(1), (2024), 3-24. DOI: 10.1007/s40516-023-00216-7
  • [10] X. Gao, L. Wang, Z. Chen, Y. Zhang and D. You: Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding. Optics and Lasers in Engineering, 124 (2020). DOI: 10.1016/j.optlaseng.2019.105835
  • [11] X. Tao, X. Ba, G. Xu and L. Liu: Effect of laser power on pulsed laser-induced mag hybrid overhead welding of 4-mm-x70 pipeline steel. Optics & Laser Technology, 164 (2023). DOI: 10.1016/j.optlastec.2023.109460
  • [12] S.M. Zayed, G. Attiya, A. El-Sayed, A. Sayed and E. El-Din Hemdan: An efficient fault diagnosis framework for digital twins using optimized machine learning models in smart industrial control systems. International Journal of Computational Intelligence Systems, 16(1), (2023). DOI: 10.1007/s44196-023-00241-6
  • [13] Z-X. Ma, P-X. Cheng, J. Ning, L-J. Zhang and S-J. Na: Innovations in monitoring, control and design of laser and laser-arc hybrid welding processes. Metals, 11(12), (2021). DOI: 10.3390/met11121910
  • [14] Q. Liu, D. Wu, Q. Wang, P. Zhang, H. Yan, T. Sun and R. Li: Progress and perspectives of joints defects of laser-arc hybrid welding: A review. The International Journal of Advanced Manufacturing Technology, 130 (2023), 1-36. DOI: 10.1007/s00170-023-12724-z
  • [15] C. Li, H. Chen and J. Xiong: Monitoring weld penetration of laser-arc hybrid welding joints without full-penetration requirement based on deep learning. Optics & Laser Technology, 172 (2024). DOI: 10.1016/j.optlastec.2023.110538
  • [16] G. Ma, L. Yu, H. Yuan, W. Xiao and Y. He: A vision-based method for lap weld defects monitoring of galvanized steel sheets using convolutional neural network. Journal of Manufacturing Processes, 64 (2021), 130-139. DOI: 10.1016/j.jmapro.2020.12.067
  • [17] D. Wu, P. Zhang, Z. Yu, Y. Gao, H. Zhang, H. Chen, S. Chen and Y. Tian: Progress and perspectives of in-situ optical monitoring in laser beam welding: Sensing, characterization and modeling. Journal of Manufacturing Processes, 75 (2022), 767-791. DOI: 10.1016/j.jmapro.2022.01.044
  • [18] Q. Wang, W. Jiao and Y. Zhang: Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control. Journal of Manufacturing Systems, 57 (2020), 429-439. DOI: 10.1016/j.jmsy.2020.10.002
  • [19] W. Cai, P. Jiang, L. Shu, S. Geng and Q. Zhou: Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring. Journal of Manufacturing Processes, 76 (2022), 695-707. DOI: 10.1016/j.jmapro.2022.02.058
  • [20] H. Kim, K. Nam, S. Oh and H. Ki: Deep-learning-based real-time monitoring of full-penetration laser keyhole welding by using the synchronized coaxial observation method. Journal of Manufacturing Processes, 68 (2021), 1018-1030. DOI: 10.1016/j.jmapro.2021.06.029
  • [21] F. Zhang, S. Liu, F. Liu and H. Zhang: Stability evaluation of laser-MAG hybrid welding process. Optics & Laser Technology, 116 (2019), 284-292. DOI: 10.1016/j.optlastec.2019.03.036
  • [22] S. Zhang, Y. Wang, M. Zhu, Y. Feng, P. Nie and Z. Li: Effects of heat source arrangements on laser-MAG hybrid welding characteristics and defect formation mechanism of 10CrNi3MoV steel. Journal of Manufacturing Processes, 58 (2020), 563-573. DOI: 10.1016/j.jmapro.2020.08.027
  • [23] X. Lü, D. Gu, Y. Wang, Y. Qu, C. Qin and F. Huang: Feature extraction of welding seam image based on laser vision. IEEE Sensors Journal, 18(11), (2018), 4715-4724. DOI: 10.1109/JSEN.2018.2824660
  • [24] Y. He, Y. Xu, Y. Chen, H. Chen and S. Chen: Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Robotics and Computer-Integrated Manufacturing, 37 (2016) 251-261. DOI: 10.1016/j.rcim.2015.04.005
  • [25] R. Xiao, Y. Xu, Z. Hou, C. Chen and S. Chen: An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding. Sensors and Actuators A: Physical, 297 (2019). DOI: 10.1016/J.SNA.2019.111533
  • [26] R. Xiao, Y. Xu, Z. Hou, C. Chen and S. Chen: A feature extraction algorithm based on improved snake model for multi-pass seam tracking in robotic arc welding. Journal of Manufacturing Processes, 72 (2021), 48-60.
  • [27] L. Wang, X. Gao and Z. Chen: Status analysis of keyhole bottom in laser-mag hybrid welding process. Optics express, 26(1), (2018), 347-355. DOI: 10.1364/OE.26.000347
  • [28] X. Gao, Y. Wang, Z. Chen, B. Ma and Y. Zhang: Analysis of welding process stability and weld quality by droplet transfer and explosion in mag-laser hybrid welding process. Journal of Manufacturing Processes, 32 (2018), 522-529.
  • [29] T. Will, J. Kohl, S. Burger, C. Hölbling, L. Müller and M. Schmidt: Weld classification with feature extraction by fresh algorithm based on surface topographical optical coherence tomography data for laser welding of copper. IEEE Access, 10 (2022), 109795-109802. DOI: 10.1109/ACCESS.2022.3208877
  • [30] T. Will, J. Kohl, C. Hoelbling, L. Müller and M. Schmidt: Laser welding of different pure copper materials under consideration of shielding gas influence and impact on quality relevant surface topographical features. Journal of Laser Applications, 35(1), (2023). DOI: 10.2351/7.0000891
  • [31] T. Brežan, P. Franciosa, M. Jezeršek and D. Ceglarek: Fusing optical coherence tomography and photodiodes for diagnosis of weld features during remote laser welding of copper-to-aluminum. Journal of Laser Applications, 35(1), (2023). DOI: 10.2351/7.0000803
  • [32] X. Tao, H. Yang, X. Ba and L. Liu: Influence of heat source arrangement on coupling characteristics of low-power pulsed laser-mag hybrid welding. The International Journal of Advanced Manufacturing Technology, 126(9), (2023), 4073-4086. DOI: 10.1007/s00170023-11227-1
  • [33] Y. Hong, B. Chang, G. Peng, Z. Yuan, X. Hou, B. Xue and D. Du: In-process monitoring of lack of fusion in ultra-thin sheets edge welding using machine vision. Sensors, 18(8), (2018). DOI: 10.3390/s18082411
  • [34] H. Zhang, J. Yu, Z. Zhang, J. Gao, Z. Su, Z. Sun and Y. Li: Arc characteristics and welding process of laser K-TIG hybrid welding. Metals, 12(7), (2022). DOI: 10.3390/met12071139
  • [35] Ö. Üstündağ, N. Bakir, S. Gook, A. Gumenyuk and M. Rethmeier: Hybrid laser-arc welding of laser-and plasma-cut 20-mm-thick structural steels. Welding in the World, 66(3), (2022), 507-514. DOI: 10.1007/s40194-022-01255-y
  • [36] Y. Zhang, D. You, X. Gao and S. Katayama: Online monitoring of welding status based on a DBN model during laser welding. Engineering, 5(4), (2019), 671-678. DOI: 10.1016/j.eng.2019.01.016
  • [37] X. Fan, X. Gao, G. Liu, N. Ma and Y. Zhang: Research and prospect of welding monitoring technology based on machine vision. The International Journal of Advanced Manufacturing Technology, 115 (2021), 3365-3391. DOI: 10.1007/s00170-021-07398-4
  • [38] V. Kumar, M. Kumar Parida and S.K. Albert: The state-of-the-art methodologies for quality analysis of arc welding process using weld data acquisition and analysis techniques. International Journal of System Assurance Engineering and Management, 13(1), (2022), 34-56. DOI: 10.1007/s13198-021-01282-w
  • [39] F. Deng, Y. Huang, S. Lu, Y. Chen, J. Chen, H. Feng, J. Zhang, Y. Yang, J. Hu, T. Lun Lam and F. Xia: A multi-sensor data fusion system for laser welding process monitoring. IEEE Access, bf 8 (2020), 147349-147357. DOI: 10.1109/ACCESS.2020.3015529
  • [40] S. Hecker, M. Scharun and T. Graf: Process monitoring based on plasma emission for power-modulated glass welding with bursts of subpicosecond laser pulses. Applied Optics, 60(12), (2021), 3526-3534. DOI: 10.1364/AO.420037
  • [41] Z. Luo, D. Wu, P. Zhang, X. Ye, H. Shi, X. Cai and Y. Tian: Laser welding penetration monitoring based on time-frequency characterization of acoustic emission and cnn-lstm hybrid network. Materials, 16(4), (2023). DOI: 10.3390/ma16041614
  • [42] X. Zhou, M. Chen, W. Shang, H. Shen and H. Xu: Real time monitoring method of welding defects based on LSTM sequence model. In 2023 IEEE 3rd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), 3 (2023), 1203-1207. DOI: 10.1109/ICIBA56860.2023.10165203
  • [43] A. Aminzadeh, S. Sattarpanah Karganroudi, M. Saleh Meiabadi, D.G. Mohan and K. Ba: A survey of process monitoring using computer-aided inspection in laser-welded blanks of light metals based on the digital twins concept. Quantum Beam Science, 6(2), (2022). DOI: 10.3390/qubs6020019
  • [44] W. Cai, J. Zhuang Wang, P. Jiang, L. Cao, G. Mi and Q. Zhou: Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. Journal of Manufacturing systems, 57 (2020), 1-18. DOI: 10.1016/j.jmsy.2020.07.021
  • [45] N. Lv, Y. Xu, S. Li, X. Yu and S. Chen: Automated control of welding penetration based on audio sensing technology. Journal of Materials Processing Technology, 250 (2017), 81-98. DOI: 10.1016/j.jmatprotec.2017.07.005
  • [46] D. Wu, Y. Huang, H. Chen, Y. He and S. Chen: VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model. Materials & Design, 123, (2017), 1-14. DOI: 10.1016/j.matdes.2017.03.033
  • [47] P. Peng, K. Fan, X. Fan, H. Zhou and Z. Guo: Real-time defect detection scheme based on deep learning for laser welding system. IEEE Sensors Journal, 23(15), (2023), 17301-17309. DOI: 10.1109/JSEN.2023.3277732
  • [48] M. Vasilev, C.N. MacLeod, C. Loukas, Y. Javadi, R.K.W. Vithanage, D. Lines, E. Mohseni, S.G. Pierce and A. Gachagan: Sensor-enabled multi-robot system for automated welding and in-process ultrasonic NDE. Sensors, 21(15), (2021). DOI: 10.3390/s21155077
  • [49] N. Wang, K. Zhong, X. Shi and X. Zhang: A robust weld seam recognition method under heavy noise based on structured-light vision. Robotics and Computer-Integrated Manufacturing, 61 (2020). DOI: 10.1016/j.rcim.2019.101821
  • [50] W. He, A. Zhang and P. Wang: Weld cross-section profile fitting and geometric dimension measurement method based on machine vision. Applied Sciences, 13(7), (2023). DOI: 10.3390/app13074455
  • [51] B. Guo, Y. Shi, G. Yu, B. Liang and K. Wang: Weld deviation detection based on wide dynamic range vision sensor in mag welding process. The International Journal of Advanced Manufacturing Technology, 87 (2016), 3397-3410. DOI: 10.1007/s00170-016-8721-2
  • [52] J.M. Griffin, S. Jones, B. Perumal and C. Perrin: Investigating the detection capability of acoustic emission monitoring to identify imperfections produced by the metal active gas (mag) welding process. In Acoustics, 5 (2023), 714-745. DOI: 10.3390/acoustics5030043
  • [53] V. Kumar, S.K. Albert and N. Chanderasekhar: Development of programmable system on chip-based weld monitoring system for quality analysis of arc welding process. International Journal of Computer Integrated Manufacturing, 33(9), (2020), 925-935.
  • [54] S.R. Hamzeh, L. Thomas, J. Polzer, X.W. Xu and H. Heinzel: A sensor based monitoring system for real-time quality control: semi-automatic arc welding case study. Procedia Manufacturing, 51 (2020), 201-206. DOI: 10.1016/j.promfg.2020.10.029
  • [55] A. Sumesh, K. Rameshkumar, A. Raja, K. Mohandas, A. Santhakumari and R. Shyambabu: Establishing correlation between current and voltage signatures of the arc and weld defects in gmaw process. Arabian journal for Science and Engineering, 42 (2017), 4649-4665. DOI: 10.1007/s13369-017-2609-9
  • [56] Y. Luo, L. Zhu, J. Han, X. Xie, R. Wan and Y. Zhu: Study on the acoustic emission effect of plasma plume in pulsed laser welding. Mechanical Systems and Signal Processing, 124 (2019), 715-723. DOI: 10.1016/j.ymssp.2019.01.045
  • [57] M.F.M. Yusof, M. Ishak and M. Fairusham Ghazali: Acoustic methods in real-time welding process monitoring: Application and future potential advancement. Journal of Mechanical Engineering and Sciences, 15(4), (2021), 8490-8507. DOI: 10.15282/jmes.15.4.2021.03.0669
  • [58] L. Schmidt, F. Römer, D. Böttger, F. Leinenbach, B. Straß, B. Wolter, K. Schricker, M. Seibold, J.-P. Bergmann and G. Del Galdo: Acoustic process monitoring in laser beam welding. Procedia CIRP, 94 (2020), 763-768. DOI: 10.1016/j.procir.2020.09.139
  • [59] S. Shevchik, Q. Tri Le, B. Meylan and K. Wasmer: Acoustic emission for in situ monitoring of laser processing. In Proceedings of 33rd European Conference on Acoustic Emission Testing (EWGAE 2018), Senlis, France, (2018).
  • [60] H.-H. Chu and Z.-Y. Wang: A vision-based system for post-welding quality measurement and defect detection. The International Journal of Advanced Manufacturing Technology, 86 (2016), 3007-3014. DOI: 10.1007/s00170-015-8334-1
  • [61] L.B. Soares, H.L. Costa, S.S da Costa Botelho, D. Souza, R.N. Rodrigues and P. Drews-Jr: A robotic passive vision system for texture analysis in weld beads. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(1), (2023). DOI: 10.1007/s40430-022-03914-z
  • [62] F.W. Müller, C. Mirz, S. Weil, A. Schiebahn, B. Corves and U. Reisgen: Weld quality characterization by vibration analysis for ultrasonic metal welding processes. Journal of Advanced Joining Processes, (2023). DOI: 10.1016/j.jajp.2023.100149
  • [63] D.A. Ramatlo, C.S. Long, P.W. Loveday and D.N. Wilke: A modelling framework for simulation of ultrasonic guided wave-based inspection of welded rail tracks. Ultrasonics, 108 (2020). DOI: 10.1016/j.ultras.2020.106215
  • [64] J. Liu, H. Zhu, Z. Li, W. Cui and Y. Shi: Effect of ultrasonic power on porosity, microstructure, mechanical properties of the aluminum alloy joint by ultrasonic assisted laser-MIG hybrid welding. Optics & Laser Technology, 119 (2019). DOI: 10.1016/j.optlastec.2019.105619
  • [65] F. Vakili-Farahani, J. Lungershausen and K. Wasmer: Wavelet analysis of light emission signals in laser beam welding. Journal of Laser Applications, 29(2), (2017). DOI: 10.2351/1.4983507
  • [66] P. Santhanam: Quality management of machine learning systems. In Engineering Dependable and Secure Machine Learning Systems: Third International Workshop, New York City, NY, USA. Revised Selected Papers 3, 1-13. Springer, 2020.
  • [67] M. Sun, M. Yang, B. Wang, L. Qian and Y. Hong: Applications of molten pool visual sensing and machine learning in welding quality monitoring. In Journal of Physics: Conference Series, 2002(1), (2021). DOI: 10.1088/1742-6596/2002/1/012016
  • [68] Z. Jin, Z. Zhang, K. Demir and G.X. Gu: Machine learning for advanced additive manufacturing. Matter, 3(5), (2020), 1541-1556. DOI: 10.1016/j.matt.2020.08.023
  • [69] M. Shafiei Alavijeh, R. Scott, F. Seviaryn and R.Gr. Maev: Using machine learning to automate ultrasound-based classification of butt-fused joints in medium-density polyethylene gas pipes. The Journal of the Acoustical Society of America, 150(1), (2021), 561-572. DOI: 10.1121/10.0005656
  • [70] C.-B. Jia, X.-F. Liu, G.-K. Zhang, Y. Zhang, C.-H. Yu and C.-S. Wu: Penetration/keyhole status prediction and model visualization based on deep learning algorithm in plasma arc welding. The International Journal of Advanced Manufacturing Technology, 117(11-12), (2021), 3577-3597. DOI: 10.1007/s00170-021-07903-9
  • [71] D Buongiorno, M. Prunella, S. Grossi, S. Mehboob Hussain, A. Rennola, N. Longo, G. Di Stefano, V. Bevilacqua and A. Brunetti: Inline defective laser weld identification by processing thermal image sequences with machine and deep learning techniques. Applied Sciences, 12(13), (2022). DOI: 10.3390/app12136455
  • [72] M.-M. Naddaf-Sh, S. Naddaf-Sh, H. Zargarzadeh, S.M. Zahiri, M. Dalton, G. Elpers and A.R. Kashani: Defect detection and classification in welding using deep learning and digital radiography. In Fault diagnosis and prognosis techniques for complex engineering systems, H.R. Karimi (Ed.), 327-352. Elsevier, 2021.
  • [73] D. Yang, Y. Cui, Z. Yu and Ho. Yuan: Deep learning based steel pipe weld defect detection. Applied Artificial Intelligence, 35(15), (2021), 1237-1249. DOI: 10.1080/08839514.2021.1975391
  • [74] E.A. Gyasi, H. Handroos and P. Kah: Survey on artificial intelligence (ai) applied in welding: A future scenario of the influence of ai on technological, economic, educational and social changes. Procedia manufacturing, 38 (2019), 702-714. DOI: 10.1016/j.promfg.2020.01.095
  • [75] W. Dai, D. Li, D. Tang, Q. Jiang, D. Wang, H. Wang and Y. Peng: Deep learning assisted vision inspection of resistance spot welds. Journal of Manufacturing Processes, 62 (2021), 262-274. DOI: 10.1016/j.jmapro.2020.12.015
  • [76] S. Chaki: Neural networks based prediction modelling of hybrid laser beam welding process parameters with sensitivity analysis. SN Applied Sciences, 1 (2019), 1-11. DOI: 10.1007/s42452-019-1264-z
  • [77] S. Kumaresan, K.S. Jai Aultrin, S.S. Kumar and M. Dev Anand: Transfer learning with CNN for classification of weld defect. IEEE Access, 9 (2021), 95097-95108. DOI: 10.1109/ACCESS.2021.3093487
  • [78] B. Wang, S.J. Hu, L. Sun and T. Freiheit: Intelligent welding system technologies: State-of-the-art review and perspectives. Journal of Manufacturing Systems, 56 (2020), 373-391. DOI: 10.1016/j.jmsy.2020.06.020
  • [79] J. Liu, G. Xu, L. Ren, Z. Qian and L. Ren: Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network. The International Journal of Advanced Manufacturing Technology, 90 (2017), 2581-2588. DOI: 10.1007/s00170-016-9588-y
  • [80] K. Nomura, K. Fukushima, T. Matsumura and S. Asai: Burn-through prediction and weld depth estimation by deep learning model monitoring the molten pool in gas metal arc welding with gap fluctuation. Journal of Manufacturing Processes, 61 (2021), 590-600. DOI: 10.1016/j.jmapro.2020.10.019
  • [81] B. Zhang, X. Wang, J. Cui, J. Wu, X. Wang, Y. Li, J. Li, Y. Tan, X. Chen, W. Wu and W. Yu: Welding defects classification by weakly supervised semantic segmentation. NDT & E International, 138 (2023). DOI: 10.1016/j.ndteint.2023.102899
  • [82] N. Cherkasov, M. Ivanov and A. Ulanov: Classification of weld defects based on computer vision system data and deep learning. In International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russian Federation, (2023), 856-860. DOI: 10.1109/icieam57311.2023.10139093
  • [83] A.A. Melakhsou, M. Batton-Hubert and N. Casoetto: Welding fault detection and diagnosis using one-class SVM with distance substitution kernels and random convolutional kernel transform. The International Journal of Advanced Manufacturing Technology, 128(1-2), (2023), 459-477. DOI: 10.21203/rs.3.rs-2378527/v3
  • [84] D. Ma, P. Jiang, L. Shu and S. Geng: Multi-sensing signals diagnosis and cnn-based detection of porosity defect during Al alloys laser welding. Journal of Manufacturing Systems, 62 (2022), 334-346. DOI: 10.1016/j.jmsy.2021.12.004
  • [85] S. Kang, K. Lee, M. Kang, Y.H. Jang and and C. Kim: Weld-penetration-depth estimation using deep learning models and multisensor signals in al/cu laser overlap welding. Optics & Laser Technology, 161 (2023). DOI: 10.1016/j.optlastec.2023.109179
  • [86] T. Wang, J. Chen, X. Gao and W. Li: Quality monitoring for laser welding based on high-speed photography and support vector machine. Applied Sciences, 7(3), (2017). DOI: 10.3390/app7030299
  • [87] D. Petković: Prediction of laser welding quality by computational intelligence approaches. Optik, 140 (2017), 597-600. DOI: 10.1016/J.IJLEO.2017.04.088
  • [88] Y. Huang, S. Hou, S. Xu, S. Zhao, L. Yang and Z. Zhang: EMD-PNN based welding defects detection using laser-induced plasma electrical signals. Journal of Manufacturing Processes, 45 (2019), 642-651. DOI: 10.1016/j.jmapro.2019.08.006
  • [89] S. Guo, Z. Liuand Y. Tan: Research on weld defect identification technology based on EMD and BP neural network. In 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), Hangzhou, China, (2022), 655-659. DOI: 10.1109/ICNISC57059.2022.00134
  • [90] J. Kershaw, R. Yu, Y.M. Zhang and P. Wang: Hybrid machine learning-enabled adaptive welding speed control. Journal of Manufacturing Processes, 71 (2021), 374-383. DOI: 10.1016/j.jmapro.2021.09.023
  • [91] G. Masinelli, T. Le-Quang, S. Zanoli, K. Wasmer and S.A. Shevchik: Adaptive laser welding control: A reinforcement learning approach. IEEE Access, 8 (2020), 103803-103814. DOI: 10.1109/ACCESS.2020.2998052
  • [92] K. Wasmer, T. Le-Quang, B. Meylan, F. Vakili-Farahani, M.P. Olbinado, A. Rack and S.A. Shevchik: Laser processing quality monitoring by combining acoustic emission and machine learning: a high-speed x-ray imaging approach. Procedia Cirp, 74 (2018), 654-658. DOI: 10.1016/j.procir.2018.08.054
  • [93] R.R. Schmidt, J. Hildebrand, I. Kraljevski, F. Duckhorn and C. Tschöpe: A study for laser additive manufacturing quality and material classification using machine learning. In 2022 IEEE Sensors, Dallas, TX, USA, (2022), 1-4. DOI: 10.1109/SENSORS52175.2022.9967311
  • [94] W. Cai, P. Jiang, L.S. Shu, S.N. Geng and Q. Zhou: Real-time monitoring of laser keyhole welding penetration state based on deep belief network. Journal of Manufacturing Processes, 72 (2021), 203-214. DOI: 10.1016/j.jmapro.2021.10.027
  • [95] D. Wu, Y. Huang, P. Zhang, Z. Yu, H. Chen and S. Chen: Visual-acoustic penetration recognition in variable polarity plasma arc welding process using hybrid deep learning approach. IEEE Access, 8 (2020), 120417-120428. DOI: 10.1109/ACCESS.2020.3005822
  • [96] S. Yamane and K. Matsuo: Gap detection using convolutional neural network and adaptive control in robotic plasma welding. International Journal of Automation Technology, 13(6), (2019), 796-802. DOI: 10.20965/ijat.2019.p0796
  • [97] R. Thompson Martínez, G. Alvarez Bestard, A. Martins Almeida Silva and S.C. Absi Alfaro: Analysis of GMAW process with deep learning and machine learning techniques. Journal of Manufacturing Processes, 62 (2021), 695-703. DOI: 10.1016/j.jmapro.2020.12.052
  • [98] J. Andrés Girón-Cruz, J.E. Pinto-Lopera and S.C. Absi Alfaro: Weld bead geometry real-time control in gas metal arc welding processes using intelligent systems. The International Journal of Advanced Manufacturing Technology, 123(11), (2022), 3871-3884. DOI: 10.1007/s00170-022-10384-z
  • [99] C. Jin, S. Shin, J. Yu and Rhee: Prediction model for back-bead monitoring during gas metal arc welding using supervised deep learning. IEEE Access, 8 (2020), 224044-224058. DOI: 10.1109/ACCESS.2020.3041274
  • [100] T. Saeheaw: Comparison of different supervised machine learning algorithms for bead geometry prediction in GMAW process. Engineering Solid Mechanics, 11(2), (2023), 175-190. DOI: 10.5267/j.esm.2022.12.003
  • [101] S. Quadir Moinuddin, S.S. Hameed, A. Kumar Dewangan, K. Ramesh Kumar and A. Shanta Kumari: A study on weld defects classification in gas metal arc welding process using machine learning techniques. Materials Today: Proceedings, 43 (2021), 623-628. DOI: 10.1016/J.MATPR.2020.12.159
  • [102] H. Arabaci and S. Laving: Weld defect categorization from welding current using principle component analysis. International Journal of Advanced Computer Science and Applications, 10(6), (2019). DOI: 10.14569/IJACSA.2019.0100628
  • [103] H. Pan, Z. Pang, Y. Wang, Y. Wang and L. Chen: A new image recognition and classification method combining transfer learning algorithm and mobilenet model for welding defects. IEEE Access, 8 (2020), 119951-119960.
  • [104] R. Miao, Z. Jiang, Q. Zhou, Y. Wu, Y. Gao, J. Zhang and Z. Jiang: Online inspection of narrow overlap weld quality using two-stage convolution neural network image recognition. Machine Vision and Applications, 32 (2021), 1-14. DOI: 10.1007/s00138-020-01158-2
  • [105] K. Srinivasan and S. Senthil Kumaran: Quality assessment of friction welding using image super-resolution via deep convolutional neural networks. Materials Today: Proceedings, 22 (2020), 2266-2273. DOI: 10.1016/j.matpr.2020.03.347
  • [106] R. Ghimire and R. Selvam: Machine learning-based weld classification for quality monitoring. Engineering Proceedings, 59(1), (2024). DOI: 10.3390/engproc2023059241
  • [107] Y. Huang, X. Wang, D. Yang, L. Wang, J. Gu, X. Zhang and K. Wang: A weld quality classification approach based on local mean decomposition and deep belief network. Journal of Materials Engineering and Performance, 30 (2021), 2229-2237. DOI: 10.1007/s11665-021-05495-9
  • [108] Y. Liu, H. Zhou, F. Tsung and S. Zhang: Real-time quality monitoring and diagnosis for manufacturing process profiles based on deep belief networks. Computers & Industrial Engineering, 136 (2019), 494-503.
  • [109] S.A. Shevchik, T. Le-Quang, F. Vakili Farahani, N. Faivre, B. Meylan, S. Zanoli and K. Wasmer: Laser welding quality monitoring via graph support vector machine with data adaptive kernel. IEEE Access, 7 (2019), 93108-93122. DOI: 10.1109/ACCESS.2019.2927661
  • [110] R.V. Patil and Y.P. Reddy: An autonomous technique for multi class weld imperfections detection and classification by support vector machine. Journal of Nondestructive Evaluation, 40(3), (2021). DOI: 10.1007/s10921-021-00801-w
  • [111] R. Liang, R. Yu, Y. Luo and Y.M. Zhang: Machine learning of weld joint penetration from weld pool surface using support vector regression. Journal of Manufacturing Processes, 41 (2019), 23-28. DOI: 10.1016/j.jmapro.2019.01.039
  • [112] B. Wang, Y. Li, Y. Luo, X. Li and T. Freiheit: Early event detection in a deep-learning driven quality prediction model for ultrasonic welding. Journal of Manufacturing Systems, 60, (2021), 325-336. DOI: 10.1016/j.jmsy.2021.06.009
  • [113] Y. Wu, Y. Meng and C. Shao: End-to-end online quality prediction for ultrasonic metal welding using sensor fusion and deep learning. Journal of Manufacturing Processes, 83 (2022), 685-694. DOI: 10.1016/j.jmapro.2022.09.011
  • [114] J. Lin, J. Lu, J. Xu and D. Li: Welding quality analysis and prediction based on deep learning. In 2021 4th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai, China, (2021), 173-177. DOI: 10.1109/WCMEIM54377.2021.00045
  • [115] D. You, X. Gao and S. Katayama: WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM. IEEE Transactions on Industrial Electronics, 62(1), (2014), 628-636. DOI: 10.1109/TIE.2014.2319216
  • [116] E. Van Der Horn and S. Mahadevan: Digital twin: Generalization, characterization and implementation. Decision Support Systems, 145 (2021). DOI: 10.1016/j.dss.2021.113524
  • [117] F. Tao, M. Zhang and A.Y.C. Nee: Digital twin driven smart manufacturing. Academic Press, 2019.
  • [118] D.A. Ramatlo, D.N. Wilke and P.W. Loveday: Digital twin hybrid modeling for enhancing guided wave ultrasound inspection signals in welded rails. Mathematical and Computational Applications, 28(2), (2023). DOI: 10.3390/mca28020058
  • [119] J. Dong, J. Hu and Z. Luo: Quality monitoring of resistance spot welding based on a digital twin. Metals, 13(4), (2023). DOI: 10.3390/met13040697
  • [120] S. Stupar, M. Bičo Ćar and M. Šestić: Challenges and benefits of using digital twin technology. In International Conference on New Technologies, Development and Applications VI, Lecture Notes in Networks and Systems, 687 Springer, (2023), 585-595.
  • [121] P. Franciosa, M. Sokolov, S. Sinha, T. Sun and D. Ceglarek: Deep learning enhanced digital twin for closed-loop in-process quality improvement. CIRP Annals, 69(1), (2020), 369-372. DOI: 10.1016/j.cirp.2020.04.110
  • [122] T. Ji and N.M. Nor: Deep learning-empowered digital twin using acoustic signal for welding quality inspection. Sensors, 23(5), (2023). DOI: 10.3390/s23052643
  • [123] D. Maity, R. Premchand, M. Muralidhar and V. Racherla: Real-time temperature monitoring of weld interface using a digital twin approach. Measurement, 219 (2023). DOI: 10.1016/j.measurement.2023.113278
  • [124] J. Liu, X. Cao, H. Zhou, L. Li, X. Liu, P. Zhao and J. Dong: A digital twin-driven approach towards traceability and dynamic control for processing quality. Advanced Engineering Informatics, 50 (2021). DOI: 10.1016/j.aei.2021.101395
  • [125] Q. Wang, W. Jiao, P. Wang and Y.M. Zhang: Digital twin for human-robot interactive welding and welder behavior analysis. IEEE/CAA Journal of Automatica Sinica, 8(2), (2020), 334-343. DOI: 10.1109/JAS.2020.1003518
  • [126] A. Papacharalampopoulos, P. Stavropoulos and D. Petrides: Towards a digital twin for manufacturing processes: Applicability on laser welding. Procedia Cirp, 88 (2020), 110-115. DOI: 10.1016/j.procir.2020.05.020
  • [127] L. Chen, G. Bi, X. Yao, C. Tan, J. Su, N. Poh Huat Ng, Y. Chew, K. Liu and S. Ki Moon: Multisensor fusion-based digital twin for localized quality prediction in robotic laser-directed energy deposition. Robotics and Computer-Integrated Manufacturing, 84 (2023). DOI: 10.1016/j.rcim.2023.102581
  • [128] J. Liu, Q. Ji, X. Zhang, Y. Chen, Y. Zhang, X. Liu and M. Tang: Digital twin model-driven capacity evaluation and scheduling optimization for ship welding production line. Journal of Intelligent Manufacturing, 37(2), (2023), 1-23. DOI: 10.1007/s10845-023-02212-2
  • [129] Q. Zhang, R. Xiao, Z. Liu, J. Duan and J. Qin: Process simulation and optimization of arc welding robot workstation based on digital twin. Machines, 11(1), (2023). DOI: 10.3390/machines11010053
  • [130] R. Söderberg, K. Wärmefjord, J. Madrid, S. Lorin, A. Forslund and L. Lindkvist: An information and simulation framework for increased quality in welded components. CIRP Annals, 67(1), (2018), 165-168.
  • [131] P. Aivaliotis, K. Georgoulias and G. Chryssolouris: The use of digital twin for predictive maintenance in manufacturing. International Journal of Computer Integrated Manufacturing, 32(11), (2019), 1067-1080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc68ee29-e9f2-4289-b2e6-4c9c1775f837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.