PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of droplet formation in a Y-junction microchannel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the formation process of droplets in a Y-junction microchannel using two immiscible fluids: water as the continuous fluid and oil as the dispersed phase. We have examined the influence of the capillary number, flow rate ratio and viscosity ratio between the two fluids; parameters which determine the length and generation frequency of the droplets. Numerical simulations have been performed using the software Ansys Fluent with the interface capture method Volume of Fluid (VOF) for solving the governing equations. Three different algorithms have been tested for the pressure-velocity coupling: SIMPLE, SIMPLEC and PISO. The results are quite similar for SIMPLE and SIMPLEC, however it turned out that PISO is a better algorithm to solve the two-phase flow. Additionally, another Y-junction is coupled in the initial geometry to observe a symmetric breakup of the droplets and their formation is explained using the pressure field and the velocity field.
Słowa kluczowe
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • ENSIAME – Ecole Nationale Supérieure d’Ingénieurs en Informatiqu é Automatique Mécanique Energétique Electronique Engineering School in Valenciennes, France
autor
  • Petroleum Engineering Undergraduate Program and Graduate Energy Program, Federal University of Espirito Santo – UFES, ES, Brazil
Bibliografia
  • 1. Bethke C.M., 2008, Geochemical and Biogeochemical Reaction Modeling, Second Edition, Cambridge University Press, p. 297
  • 2. Brackbill J.U., Kothe D.B., Zemach C., 1992, A continuum method for modeling surface tension, Journal of Computational Physics, 100, 335-354
  • 3. Coelho J.K., Pena M.D., Romero O.J., 2016, Pore-scale modeling of oil mobilization trapped in a square cavity, IEEE America Latina, 14, 4, 1800-1807, DOI: 10.1109/TLA.2016.7483518
  • 4. Cong Z., Zhu C., Fu T., Ma Y., 2014, Bubble breakup and distribution in asymmetric Y-bifurcating microchannel, CIESC Journal, 65, 1, 93-99
  • 5. Dolomite, 2015, Droplet microfluidics brochure for biology, food and cosmetics, drug discovery, chemistry, http://www.dolomite-microfluidics.com/en/applications
  • 6. Ferziger J.H., Peric M., 2002, Computational Methods for Fluid Dynamics, Springer, Berlin
  • 7. FLUENT, 2012, Ansys Inc. Fluent – Theory Guide Documentation
  • 8. Fu T., Ma Y., Funfschilling D., Li H.Z., 2011, Dynamics of bubble breakup in a microfluidic T-junction divergence, Chemical Engineering Science, 66, 4184-4195
  • 9. Fu T., Ma Y., Li H.Z., 2014, Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop, AIChE Journal, 60, 5, 1920-1929
  • 10. Galusinski C., Vigneaux P., 2008, On stability condition for bifluid flows with surface tension: Application to microfluidics, Journal of Computational Physics, 227, 6140-6164
  • 11. Garstecki P., Fuerstman M.J., Stone H.A., Whitesides G.M., 2006, Formation of droplets and bubbles in a microfluidic T-junctionscaling and mechanism of break-up, Lab on a Chip, 6, 437-446
  • 12. Hirt C.W., Nichols B.D., 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, 39, 201-225
  • 13. Jamaloei B.Y., Kharrat R., Asghari K., 2011, The influence of pore wettability on the microstructure of residual oil in surfactant-enhanced water flooding in heavy oil reservoirs: Implications for pore-scale flow characterization, Journal of Petroleum Science and Engineering, 7, 1, 121-134
  • 14. Lih F.L., Miao J.M., 2015, Effect of junction configurations on microdroplet formation in a T-Junction microchannel, Journal of Applied Mechanics and Technical Physics, 56, 2, 220-230
  • 15. Liu Z.M., Liu L.K., Feng S., 2015, Effects of geometric configuration on droplet generation in Y-junctions and anti-Y-junctions microchannels, Acta Mechanica Sinica, 31, 5, 741-749
  • 16. Patankar S.V., 1980, Numerical Heat Transfer and Fluid Flow (Series in computational methods in mechanics and thermal sciences), Hemisphere Publishing Corporation, Washington-New YorkLondon
  • 17. Qian D., Lawal A., 2006, Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel, Chemical Engineering Science, 61, 7609-7625, DOI: 10.1016/j.ces.2006.08.073
  • 18. Santos K.B., Romero O.J., Meneguelo A.P., Ribeiro D.C., 2016, A numerical investigation of immiscible water-oil displacement in simplified porous media, IEEE America Latina, 14, 5, 2175-2183, DOI: 10.1109/TLA.2016.7530411
  • 19. Tarchichi N., Chollet F., Manceau J., 2013, New regime of droplet generation in a T-Shape microfluidic junction, Journal of Microfluidics and Nanofluidics, 14, 1, 45-51
  • 20. Tice J.D., Lyon A.D., Ismagilov R.F., 2004, Effects of viscosity on droplet formation and mixing in microfluidic channels, Analytica Chimica Acta, 507, 1, 73-77
  • 21. Versteeg, H.K., Malalasekera W., 1998, An Introduction to Computational Fluid Dynamics, Longman, London
  • 22. Waclawczyk T., Koronowicz, T., 2008, Comparison of CICSAM and HRIC high-resolution schemes for interface capturing, Journal of Theoretical and Applied Mechanics, 46, 2, 325-345
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc65d17d-047f-4730-bc18-5c605cf6ac1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.