PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bio-optical trends of seas around Turkey : An assessment of the spatial and temporal variability

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Until present, bio-optical characteristics and their variations in the eastern Mediterranean and Black Sea have rarely been studied. In order to characterize the basic features of bio-optical variables found in the seas surrounding Turkey, remotely sensed data sets covering the period between September 1997 and March 2017 were studied for the purpose of this research. Chlorophyll-a concentration (CHL), absorption coefficient by colored dissolved organic matter (CDOM) and particulate backscattering coefficient (BBP) were both evaluated to describe their recent linear and non-linear inter-annual patterns in the sub regions of the northern Levantine Sea (LS), the eastern Aegean Sea (AS), the Marmara Sea (MS) and the southern Black Sea (BS). The results determined a highly significant and decreasing trend of CHL in the Black Sea, whilst most other regions from the seas around Turkey displayed non-significant trends. The analysis indicated that the seas around Turkey can be clustered into two regions based on their bio-optical properties; one being the Black Sea and Marmara Sea, and the second cluster being the Aegean Sea and Levantine Sea.
Czasopismo
Rocznik
Strony
488--499
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
autor
  • Marine School — Earth System Science Research Center, Girne American University, Girne, TRNC, Turkey
autor
  • Fisheries Faculty, Department of Marine Biology, Çukurova University, Balcalı, Adana, Turkey
Bibliografia
  • [1] Agirbas, E., Koca, L., Aytan, U., 2017. Spatio-temporal pattern of phytoplankton and pigment composition in surface waters of south-eastern Black Sea. Oceanologia 59 (3), 283-299, http://dx.doi.org/10.1016/j.oceano.2017.03.004.
  • [2] Akpinar, A., Yilmaz, E., Fach, B. A., Salihoğlu, B., 2016. Physical oceanography of the Eastern Mediterranean Sea. In: Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B. (Eds.), The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Turkish Marine Foundation, l̇ stanbul, 1-14.
  • [3] Akyurek, M., 2003. Türkiye yıllık ortalama akımlarının trend analizi. Istanbul Technical University, Istanbul, 105 pp.
  • [4] Berner, K. A. B., Berner, R. A. C., 2012. Global Environment: Water, Air, and Geochemical Cycles, 2nd ed. Princeton Univ. Press, 444 pp.
  • [5] Beşiktepe, Ş. T., Sur, H. ĺ., Özsoy, E., Latif, M. A., Oğuz, T., Ünlüata, Ü., 1994. The circulation and hydrography of the Marmara Sea. Prog. Oceanogr. 34 (4), 285-334, http://dx.doi.org/10.1016/0079-6611(94)90018-3.
  • [6] Bronaugh, D., Werner, A., 2013. zyp: Zhang + Yue-Pilon trends package.
  • [7] Burenkov, V. I., Kopelevich, O. V., Sheberstov, S. V., Ershova, S. V., Evdoshenko, M. A., 1999. Bio-optical characteristics of the Aegean Sea retrieved from satellite ocean color data. In: The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems. Springer, Netherlands, Dordrecht, 313-326, http://dx.doi.org/10.1007/978-94-011-4796-5_21.
  • [8] Cauwet, G., Déliat, G., Krastev, A., Shtereva, G., Becquevort, S., Lancelot, C., Momzikoff, A., Saliot, A., Cociasu, A., Popa, L., 2002. Seasonal DOC accumulation in the Black Sea: a regional explanation for a general mechanism. Mar. Chem. 79 (3-4), 193-205, http://dx.doi.org/10.1016/S0304-4203(02)00064-6.
  • [9] Ceribasi, G., Dogan, E., 2015. Trend analizi yöntemi kullanılarak batı ve doğu Karadeniz ile Sakarya havzası akım miktarlarının değerlendirilmesi. SDU Int. J. Technol. Sci. 7 (2), 1-12.
  • [10] Chami, M., Shybanov, E. B., Churilova, T. Y., Khomenko, G. A., Lee, M. E.-G., Martynov, O. V., Berseneva, G. A., Korotaev, G. K., 2005. Optical properties of the particles in the Crimea coastal waters (Black Sea). J. Geophys. Res. 110, C11020, http://dx.doi.org/10.1029/2005JC003008.
  • [11] Cleveland, R. B., Cleveland, W. S., McRae, J. E., Terpenning, I., 1990. STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6 (1), 3-73.
  • [12] Coble, P. G., Del Castillo, C. E., Avril, B., 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 SW monsoon. Deep Res. Pt. II 45, 2195-2223, http://dx.doi.org/10.1016/S0967-0645(98)00068-X.
  • [13] Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., Santoleri, R., 2016. Mediterranean ocean colour chlorophyll trends. PLOS ONE 11 (6), e0155756, http://dx.doi.org/10.1371/journal.pone.0155756.
  • [14] Coppini, G., Lyubarstev, V., Pinardi, N., Colella, S., Santoleri, R., Christiansen, T., 2013. The use of ocean-colour data to estimate Chl-a trends in European seas. Int. J. Geosci. 4 (6), 927-949, http://dx.doi.org/10.4236/ijg.2013.46087.
  • [15] Daskalov, G., 1999. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models. Fish. Res. 41 (1), 1-23, http://dx.doi.org/10.1016/S0165-7836(99)00006-5.
  • [16] Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., 2007. Distribution of clay minerals in surface sediments of the Aegean Sea: a compilation. Int. J. Earth Sci. 96 (4), 769-780, http://dx.doi.org/10.1007/s00531-006-0119-1.
  • [17] El Hourany, R., Fadel, A., Gemayel, E., Abboud-Abi Saab, M., Faour, G., 2017. Spatio-temporal variability of the phytoplankton bio-mass in the Levantine basin between 2002 and 2015 using MODIS products. Oceanologia 59 (2), 153-165, http://dx.doi.org/10.1016/j.oceano.2016.12.002.
  • [18] Eronat, C., Sayin, E., 2014. Temporal evolution of the water characteristics in the bays along the eastern coast of the Aegean Sea: Saros, ĺzmir, and Gökova bays. Turk. J. Earth Sci. 23, 53-66, http://dx.doi.org/10.3906/yer-1307-4.
  • [19] Garaba, S., Voß, D., Zielinski, O., 2014. Physical, bio-optical state and correlations in North-Western European shelf seas. Remote Sens. 6 (6), 5042-5066, http://dx.doi.org/10.3390/rs6065042.
  • [20] Gregg, W. W., Rousseaux, C. S., 2014. Decadal trends in global pelagic ocean chlorophyll: a new assessment integrating multiple satellites, in situ data, and models. J. Geophys. Res. Ocean. 119 (9), 5921-5933, http://dx.doi.org/10.1002/2014JC010158.
  • [21] Gucu, A. C., Inanmaz, Ö. E., Ok, M., Sakinan, S., 2016. Recent changes in the spawning grounds of Black Sea anchovy, Engraulis encrasicolus. Fish. Oceanogr. 25 (1), 67-84, http://dx.doi.org/10.1111/fog.12135.
  • [22] Hedges, J. I., 1992. Global biogeochemical cycles: progress and problems. Mar. Chem. 39 (1-3), 67-93, http://dx.doi.org/10.1016/0304-4203(92)90096-S.
  • [23] Hipel, K. W., McLeod, A. I., 1994. Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam, 1013 pp.
  • [24] Ignatiades, L., 1998. The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean. J. Plankton Res. 20 (5), 985-995, http://dx.doi.org/10.1093/plankt/20.5.985.
  • [25] Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., Gotsis-Skretas, O., 2002. Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J. Mar. Syst. 36 (1-2), 11-28, http://dx.doi.org/10.1016/S0924-7963(02)00132-X.
  • [26] Jafar-Sidik, M., Gohin, F., Bowers, D., Howarth, J., Hull, T., 2017. The relationship between Suspended Particulate Matter and Turbidity at a mooring station in a coastal environment: consequences for satellite-derived products. Oceanologia 59 (3), 365-378, http://dx.doi.org/10.1016/j.oceano.2017.04.003.
  • [27] Karageorgis, A. P., Gardner, W. D., Mikkelsen, O. A., Georgopoulos, D., Ogston, A. S., Assimakopoulou, G., Krasakopoulou, E., Oaie, G., Secrieru, D., Kanellopoulos, T. D., Pagou, K., Anagnostou, C., Papathanassiou, E., 2014. Particle sources over the Danube River delta, Black Sea based on distribution, composition and size using optics, imaging and bulk analyses. J. Mar. Syst. 131, 74-90, http://dx.doi.org/10.1016/j.jmarsys.2013.11.013.
  • [28] Kasprzak, P., Padisák, J., Koschel, R., Krienitz, L., Gervais, F., 2008. Chlorophyll a concentration across a trophic gradient of lakes: an estimator of phytoplankton biomass? Limnol. — Ecol. Manag. Inl. Waters 38 (3-4), 327-338, http://dx.doi.org/10.1016/j.-limno.2008.07.002.
  • [29] Kideys, A. E., 1994. Recent dramatic changes in the Black Sea ecosystem: the reason for the sharp decline in Turkish anchovy fisheries. J. Mar. Syst. 5 (2), 171-181, http://dx.doi.org/10.1016/0924-7963(94)90030-2.
  • [30] Loisel, H., Bosc, E., Stramski, D., Oubelkheir, K., Deschamps, P.-Y., 2001. Seasonal variability of the backscattering coefficient in the Mediterranean Sea based on satellite SeaWiFS imagery. Geophys. Res. Lett. 28 (22), 4203-4206, http://dx.doi.org/10.1029/2001GL013863.
  • [31] Margolin, A. R., 2017. Environmental Impacts on Carbon Biogeochemistry in Marginal Seas. Unive. Miami, Miami, 137 pp.
  • [32] Maritorena, S., Siegel, D. A., 2005. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens. Environ. 94 (4), 429-440, http://dx.doi.org/10.1016/j.rse.2004.08.014.
  • [33] McLeod, A. I., 2011. Kendall: Kendall Rank Correlation and Mann-Kendall Trend Test.
  • [34] Mikaelyan, A. S., 1997. Long-term variability of phytoplankton com-munities in open black sea in relation to environmental changes. In: Sensitivity to Change: Black Sea, Baltic Sea and North Sea. Springer Netherlands, Dordrecht, 105-116, http://dx.doi.org/10.1007/978-94-011-5758-2_9.
  • [35] Mikaelyan, A. S., Zatsepin, A. G., Chasovnikov, V. K., 2013. Long-term changes in nutrient supply of phytoplankton growth in the Black Sea. J. Mar. Syst. 117-118, 53-4, http://dx.doi.org/10.1016/j.jmarsys.2013.02.012.
  • [36] Nittis, K., Perivoliotis, L., 2002. Circulation and hydrological characteristics of the North Aegean Sea: a contribution from real-time buoy measurements. Mediterr. Mar. Sci. 3 (1), 21, http://dx.doi.org/10.12681/mms.255.
  • [37] O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., McClain, C., 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 103 (C11), 24937-24953, http://dx.doi.org/10.1029/98JC02160.
  • [38] Oguz, T., Gilbert, D., 2007. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep Res. Pt. I Oceanogr. Res. Pap. 54 (2), 220-242, http://dx.doi.org/10.1016/j.dsr.2006.09.010.
  • [39] Oguz, T., Salihoglu, B., Moncheva, S., Abaza, V., 2012. Regional peculiarities of community-wide trophic cascades in strongly degraded Black Sea food web. J. Plankton Res. 34 (4), 338-343, http://dx.doi.org/10.1093/plankt/fbs002.
  • [40] Oguz, T., Tugrul, S., Kideys, A., Ediger, V., Kubilay, N., 2004. Physical and biogeochemical characteristics of the Black Sea. In: Robinson, A. R., Brink, H. K. (Eds.), The Sea. Harvard Univ. Press, 1331-1369.
  • [41] Örek, H., 2007. Bio-optical Characteristics of Turkish Seas. Middle East Tech. Univ., Ankara, 160 pp.
  • [42] Özsoy, E., Hecht, A., Ünlüata, Ü., Brenner, S., Sur, H. I., Bishop, J., Latif, M. A., Rozentraub, Z., Oğuz, T., 1993. A synthesis of the Levantine Basin circulation and hydrography, 1985-1990. Deep Res. Pt. II 40 (6), 1075-1119, http://dx.doi.org/10.1016/0967-0645(93)90063-S.
  • [43] Pettitt, A. N., 1979. A non-parametric approach to the change-point problem. Appl. Stat. 28, 126-135.
  • [44] Pitta, E., 2016. Properties and Dynamics of Chromophoric Dissolved Organic Matter (CDOM) in Eastern Mediterranean Waters. National and Kapodistrian Univ. Athens, Athens, 175 pp.
  • [45] Pohlert, T., 2016. Package 'Trend': Non-Parametric Trend Tests and Change-Point Detection. R Packag. 26., http://dx.doi.org/10.13140/RG.2.1.2633.4243.
  • [46] Polat, C. S., Tugrul, S., 1995. Nutrient and organic carbon exchanges between the Black and Marmara Seas through the Bosphorus Strait. Cont. Shelf Res. 15 (9), 1115-1132, http://dx.doi.org/10.1016/0278-4343(94)00064-T.
  • [47] Puddu, A., Zoppini, A., Pettine, M., 2000. Dissolved organic matter and microbial food web interactions in the marine environment: the case of the Adriatic Sea. Int. J. Environ. Pollut. 13 (1-6), 473-494, http://dx.doi.org/10.1504/IJEP.2000.002331.
  • [48] Reynolds, R. A., Stramski, D., Neukermans, G., 2016. Optical back-scattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 61 (5), 1869-1890, http://dx.doi.org/10.1002/lno.10341.
  • [49] Roether, W., Manca, B. B., Klein, B., Bregant, D., Georgopoulos, D., Beitzel, V., Kovacevic, V., Luchetta, A., 1996. Recent changes in eastern Mediterranean deep waters. Science 271 (5247), 333-335, http://dx.doi.org/10.1126/science.271.5247.333.
  • [50] R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Available from: http://www.R-project.org/ (accessed 15.11.16).
  • [51] Sancak, S., Besiktepe, S. T., Yilmaz, A., Lee, M., Frouin, R., 2005. Evaluation of SeaWiFS chlorophyll-a in the Black and Mediterranean Seas. Int. J. Remote Sens. 26 (10), 2045-2060, http://dx.doi.org/10.1080/01431160512331337853.
  • [52] Sayin, E., 2003. Physical features of the Izmir Bay. Cont. Shelf Res. 23 (10), 957-970, http://dx.doi.org/10.1016/S0278-4343(03)00083-9.
  • [53] Sen, P. K., 1968. Estimates of the regression based on Kendall's Tau. J. Am. Stat. Assoc. 63, 1379-1389.
  • [54] Siegel, D. A., Buesseler, K. O., Doney, S. C., Sailley, S. F., Behrenfeld, M. J., Boyd, P. W., 2014. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cy. 28, 181-196, http://dx.doi.org/10.1002/2013GB004743.
  • [55] Siegel, D. A., Maritorena, S., Nelson, N. B., Behrenfeld, M. J., 2005. Independence and interdependencies among global ocean color properties: reassessing the bio-optical assumption. J. Geophys. Res. 110, C07011, http://dx.doi.org/10.1029/2004JC002527.
  • [56] Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E. D., Giannakourou, A., Gotsis, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., Van Wambeke, F., Zervakis, V., 2002. Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). J. Mar. Syst. 33-34, 335-353, http://dx.doi.org/10.1016/S0924-7963(02)00065-9.
  • [57] Souvermezoglou, E., Karasakopoulou, E., Pavlidou, A., 2014. Temporal and spatial variability of nutrients and oxygen in the North Aegean Sea during the last thirty years. Mediterr. Mar. Sci. 15 (4), 18, http://dx.doi.org/10.12681/mms.1017.
  • [58] Stedmon, C. A., Markager, S., 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea: an algorithm for differentiation between marine and terrestrially derived organic matter. Limnol. Oceanogr. 46 (8), 2087-2093, http://dx.doi.org/10.4319/lo.2001.46.8.2087.
  • [59] Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., Claustre, H., 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences 5 (1), 171-201, http://dx.doi.org/10.5194/bg-5-171-2008.
  • [60] Theocharis, A., Georgopoulos, D., Lascaratos, A., Nittis, K., 1993. Water masses and circulation in the central region of the Eastern Mediterranean: Eastern Ionian, South Aegean and Northwest Levantine, 1986-1987. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 40 (6), 1121-1142, http://dx.doi.org/10.1016/0967-0645(93)90064-T.
  • [61] Tuğrul, S., Yücel, N., Akçay, I., 2016. Chemical oceanography of North Eastern Mediterranean. In: Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B. (Eds.), The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance. Mar. Res. Foundation, ĺstanbul, 15-29.
  • [62] Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E., Mentzafou, A., 2015. Colored dissolved organic matter dynamics and anthropogenic influences in a major trans-boundary river and its coastal wetland. Limnol. Oceanogr. 60 (4), 1222-1240, http://dx.doi.org/10.1002/lno.10092.
  • [63] Vervatis, V. D., Sofianos, S. S., Skliris, N., Somot, S., Lascaratos, A., Rixen, M., 2013. Mechanisms controlling the thermohaline circulation pattern variability in the Aegean-Levantine region. A hindcast simulation (1960-2000) with an eddy resolving model. Deep Res. Pt. I Oceanogr. Res. Pap. 74, 82-97, http://dx.doi.org/10.1016/j.dsr.2012.12.011.
  • [64] Yalçın, B., Artüz, M. L., Pavlidou, A., Çubuk, S., Dassenakis, M., 2017. Nutrient dynamics and eutrophication in the Sea of Marmara: data from recent oceanographic research. Sci. Total Environ. 601-602, 405-424, http://dx.doi.org/10.1016/j.scitotenv.2017.05.179.
  • [65] Zeri, C., Beşiktepe, S¸., Giannakourou, A., Krasakopoulou, E., Tzortziou, M., Tsoliakos, D., Pavlidou, A., Mousdis, G., Pitta, E., Scoullos, M., Papathanassiou, E., 2014. Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara-North Aegean Seas during August 2008. J. Mar. Syst. 135, 124-136, http://dx.doi.org/10.1016/j.jmarsys.2013.11.019.
  • [66] Zielinski, O., Busch, J. A., Cembella, A. D., Daly, K. L., Engelbrektsson, J., Hannides, A. K., Schmidt, H., 2009. Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens. Ocean Sci. 5 (3), 329-349, http://dx.doi.org/10.5194/os-5-329-2009.
  • [67] Zuur, A. F., Ieno, E. N., Smith, G. M., 2007. Analysing Ecological Data, Statistics for Biology and Health. Springer New York, p. 672, http://dx.doi.org/10.1007/978-0-387-45972-1.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc61d40b-c5ee-4e48-b19e-f29bfa14c136
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.