PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Edge computing in IoT-enabled honeybee monitoring for the detection of Varroa destructor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among many important functions, bees play a key role in food production. Unfortunately, worldwide bee populations have been decreasing since 2007. One reason for the decrease of adult worker bees is varroosis, a parasitic disease caused by the Varroa destructor (V. destructor) mite. Varroosis can be quickly eliminated from beehives once detected. However, this requires them to be monitored continuously during periods of bee activity to ensure that V. destructor mites are detected before they spread and infest the entire beehive. To this end, the use of Internet of things (IoT) devices can significantly increase detection speed. Comprehensive solutions are required that can cover entire apiaries and prevent the disease from spreading between hives and apiaries. In this paper, we present a solution for global monitoring of apiaries and the detection of V. destructor mites in beehives. Our solution captures and processes video streams from camera-based IoT devices, analyzes those streams using edge computing, and constructs a global collection of cases within the cloud. We have designed an IoT device that monitors bees and detects V. destructor infestation via video stream analysis on a GPU-accelerated Nvidia Jetson Nano. Experimental results show that the detection process can be run in real time while maintaining similar efficacy to alternative approaches.
Rocznik
Strony
355--369
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • Department of Applied Informatics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
autor
  • Department of Applied Informatics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Distributed Systems and Informatic Devices, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Graphics, Computer Vision, and Digital Systems, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
  • Department of Applied Informatics, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] Babic, Z., Pilipovic, R., Risojevic, V. and Mirjanic, G. (2016). Pollen bearing honey bee detection in hive entrance video recorded by remote embedded system for pollination monitoring, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences III–7: 51–57.
  • [2] Balta, A., Dogan, S., Ozmen Koca, G. and Akbal, E. (2017). Software modeling of remote controlled beehive design, International Conference on Advances and Innovations in Engineering (ICAIE), Elziğ, Turkey, pp. 1–6.
  • [3] Banks, A., Briggs, E., Borgendale, K. and Gupta, R. (2019). MQTT Version 5.0, OASIS Standard, https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html.
  • [4] Barron, A.B. (2015). Death of the bee hive: Understanding the failure of an insect society, Current Opinion in Insect Science 10: 45–50.
  • [5] Bayir, R. and Albayrak, A. (2016). The monitoring of nectar flow period of honey bees using wireless sensor networks, International Journal of Distributed Sensor Networks 12(11): 1–8.
  • [6] Bencsik, M., Bencsik, J., Baxter, M., Lucian, A., Romieu, J. and Millet, M. (2011). Identification of the honey bee swarming process by analysing the time course of hive vibrations, Computers and Electronics in Agriculture 76(1): 44–50.
  • [7] Bjerge, K., Frigaard, C.E., Mikkelsen, P.H., Nielsen, T.H., Misbih, M. and Kryger, P. (2019). A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony, Computers and Electronics in Agriculture 164: 104898.
  • [8] Boecking, O. and Genersch, E. (2008). Varroosis—The ongoing crisis in bee keeping, Journal für Verbraucherschutz und Lebensmittelsicherheit 3: 221–228.
  • [9] Bojanic Rasovic, M., Davidović, V. and Joksimović-Todorović, M. (2018). Measures to protect bee health against varroosis in Montenegro, Acta Agriculturae Serbica 23(46): 177–185.
  • [10] Braga, A.R., Hassler, E.E., Gomes, D.G., Freitas, B.M. and Cazier, J.A. (2019). IoT for development: Building a classification algorithm to help beekeepers detect honeybee health problems early, Americas Conference on Information Systems (AMCIS), Cancún, Mexico, pp. 1–10.
  • [11] Campbell, J., Mummert, L. and Sukthankar, R. (2008). Video monitoring of honey bee colonies at the hive entrance, Workshop on Visual Observation and Analysis of Vertebrate and Insect Behaviour (ICPR), Tampa, USA, Vol. 8, pp. 1–4.
  • [12] Chen, C., Yang, E.-C., Jiang, J.-A. and Lin, T.-T. (2012). An imaging system for monitoring the in-and-out activity of honey bees, Computers and Electronics in Agriculture 89: 100 –109.
  • [13] Chen, Y.-L., Chien, H.-Y., Hsu, T.-H., Jing, Y.-J., Lin, C.-Y. and Lin, Y.-C. (2020). A PI-based beehive IoT system design, in C.-N. Yang et al. (Eds), Security with Intelligent Computing and Big-Data Services, Springer International Publishing, Cham, pp. 535–543.
  • [14] Chen, Y.P. and Siede, R. (2007). Honey bee viruses, in K. Maramorosch et al. (Eds), Advances in Virus Research, Academic Press, Cambridge, pp. 33–80.
  • [15] Cornman, R.S., Tarpy, D.R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J.S., van Engelsdorp, D. and Evans, J.D. (2012). Pathogen webs in collapsing honey bee colonies, PLOS ONE 7(8): 1–15.
  • [16] Dasig, D.D. and Mendez, J.M. (2020). An IoT and wireless sensor network-based technology for a low-cost precision apiculture, in P. Pattnaik et al. (Eds), Internet of Things and Analytics for Agriculture, Springer, Singapore, Vol. 2, pp. 67–92.
  • [17] Debauche, O., Moulat, M.E., Mahmoudi, S., Boukraa, S., Manneback, P. and Lebeau, F. (2018). Web monitoring of bee health for researchers and beekeepers based on the Internet of things, Procedia Computer Science 130: 991–998.
  • [18] Dineva, K. and Atanasova, T. (2018). OSEMN process for working over data acquired by IoT devices mounted in beehives, Current Trends in Natural Sciences 7(13): 47–53.
  • [19] Domański, A., Domańska, J., Czachórski, T., Klamka, J., Szyguła, J. and Marek, D. (2021). The IoT gateway with active queue management, International Journal of Applied Mathematics and Computer Science 31(1): 165–178, Doi: 10.34768/amcs-2021-0012.
  • [20] Dunham, W. (1931). Hive temperatures for each hour of a day, The Ohio Journal of Science 31(107): 181–188.
  • [21] Edwards-Murphy, F., Magno, M., Whelan, P.M., O’Halloran, J. and Popovici, E.M. (2016). b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring, Computers and Electronics in Agriculture 124: 211–219.
  • [22] Elizondo, V., Briceno, J., Travieso, C. and Alonso, J. (2013). Video monitoring of a mite in honeybee cells, Advanced Materials Research 664: 1107–1113.
  • [23] Fitzgerald, D.W., Murphy, F.E., Wright, W.M.D., Whelan, M. and Popovici, E.M. (2015). Design and development of a smart weighing scale for beehive monitoring, 2015 26th Irish Signals and Systems Conference (ISSC), Carlow, Ireland, pp. 1–6.
  • [24] Gates, B.N. (1914). The Temperature of the Bee Colony, US Department of Agriculture, Washington DC.
  • [25] Gil-Lebrero, S., Quiles Latorre, F., Ortiz, M., Sánche Ruiz, V., Gamiz, V. and Luna-Rodriguez, J.-J. (2017). Honey bee colonies remote monitoring system, Sensors 17(1): 55.
  • [26] Gołosz, M. and Mrozek, D. (2019). Exploration of data from smart bands in the cloud and on the edge—The impact on the data storage space, in J.M.F. Rodrigues et al. (Eds), Computational Science—ICCS 2019, Springer International Publishing, Cham, pp. 607–620.
  • [27] Grzesik, P. and Mrozek, D. (2021). Metagenomic analysis at the edge with Jetson Xavier NX, in M. Paszynski et al. (Eds), Computational Science—ICCS 2021, Springer International Publishing, Cham, pp. 500–511.
  • [28] Guzmán-Novoa, E., Eccles, L., Calvete, Y., Mcgowan, J., Kelly, P.G. and Correa-Benítez, A. (2010). Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada, Apidologie 41(4): 443–450.
  • [29] König, A. (2019). Indusbee 4.0—Integrated intelligent sensory systems for advanced bee hive instrumentation and hive keepers’ assistance systems, Sensors & Transducers Journal 237(9–10): 109–121.
  • [30] Kontogiannis, S. (2019). An Internet of things-based low-power integrated beekeeping safety and conditions monitoring system, Inventions 4(3): 1–26.
  • [31] Krzyśka, R. (2022). ULmonitor, http://ulmonitor.pl/onas-eng.htm.
  • [32] Kviesis, A. and Zacepins, A. (2015). System architectures for real-time bee colony temperature monitoring, ICTE in Regional Development, Valmiera, Latvia, pp. 86–94.
  • [33] Machhamer, R., Altenhofer, J., Ueding, K., Czenkusch, L., Stolz, F., Harth, M., Mattern, M., Latif, A., Haab, S., Herrmann, J., Schmeink, A., Gollmer, K. and Dartmann, G. (2020). Visual programmed IoT beehive monitoring for decision aid by machine learning based anomaly detection, 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1–5.
  • [34] Marstaller, J., Tausch, F. and Stock, S. (2019). DeepBees—Building and scaling convolutional neuronal nets for fast and large-scale visual monitoring of bee hives, International Conference on Computer Vision, Seoul, Republic of Korea, pp. 1–8.
  • [35] Meikle, W. and Holst, N. (2014). Application of continuous monitoring of honeybee colonies, Apidologie 46(1): 10–22.
  • [36] Meitalovs, J., Histjajevs, A. and Stalidzans, E. (2009). Automatic microclimate controlled beehive observation system, 8th International Scientific Conference ‘Enginieering for Rural Development’, Jelgava, Latvia, pp. 265–271.
  • [37] Mielnik, P., Fojcik, M., Tokarz, K., Rodak, Z. and Pollen, B. (2021). Detecting of minimal changes in physical activity using one accelerometer sensor, in K. Wojtkiewicz et al. (Eds), Advances in Computational Collective Intelligence, Springer International Publishing, Cham, pp. 498–508.
  • [38] Mielnik, P., Tokarz, K., Mrozek, D., Czekalski, P., Fojcik, M., Hjelle, A.M. and Milik, M. (2019). Monitoring of chronic arthritis patients with wearables—Report from the concept phase, in N.T. Nguyen et al. (Eds), Computational Collective Intelligence, Springer International Publishing, Cham, pp. 229–238.
  • [39] Mishra, B. and Kertesz, A. (2020). The use of MQTT in M2M and IoT systems: A survey, IEEE Access 8: 201071–201086.
  • [40] Mrozek, D., Milik, M., Małysiak-Mrozek, B., Tokarz, K., Duszenko, A. and Kozielski, S. (2020a). Fuzzy intelligence in monitoring older adults with wearables, in V.V. Krzhizhanovskaya et al. (Eds), Computational Science—ICCS 2020, Springer International Publishing, Cham, pp. 288–301.
  • [41] Mrozek, D., Tokarz, K., Pankowski, D. and Małysiak-Mrozek, B. (2020b). A hopping umbrella for fuzzy joining data streams from IoT devices in the cloud and on the edge, IEEE Transactions on Fuzzy Systems 28(5): 916–928.
  • [42] Nazir, D., Fizza, M., Waseem, A. and Khan, S. (2018). Vehicle detection on embedded single board computers, 2018 7th International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, pp. 480–485.
  • [43] Nvidia (32.7.1 Release). Nvidia Jetson Linux Developer Guide, Nvidia, Santa Clara, https://docs.nvidia.com/jetson/l4t/.
  • [44] Ochoa, I.Z., Gutierrez, S. and Rodríguez, F. (2019). Internet of things: Low cost monitoring beehive system using wireless sensor network, 2019 IEEE International Conference on Engineering Veracruz (ICEV), Boca del Rio, Mexico, Vol. I, pp. 1–7.
  • [45] Pierleoni, P., Concetti, R., Belli, A. and Palma, L. (2020). Amazon, Google and Microsoft solutions for IoT: Architectures and a performance comparison, IEEE Access 8: 5455–5470.
  • [46] Qandour, A., Ahmad, I., Habibi, D. and Leppard, M. (2014). Remote beehive monitoring using acoustic signals, Acoustics Australia/Australian Acoustical Society 42(3): 204–209.
  • [47] Rodak, Z., Tokarz, K., Mielnik, P. and Fojcik, M. (2022). Simultaneous measurements reading from more than one Mi Band 3 wristbands, in A.K. Nagar et al. (Eds), Intelligent Sustainable Systems, Springer Singapore, Singapore, pp. 93–101.
  • [48] Rustia, D.J., Ngo, N. and Lin, T.-T. (2016). An IoT-based information system for honeybee in and out activity with beehive environmental condition monitoring, Conference on Bio-Mechatronics and Agricultural Machinery Engineering, Niigata, Japan, pp. 1–2.
  • [49] Schneider, P. and Drescher, W. (1987). Einfluss der parasitierung durch die milbe varroa jacobsoni oud. auf das schlupfgewicht, die gewichtsentwicklung, die entwicklung der hypopharynxdrüsen und die lebensdauer von Apis mellifera l, Apidologie 18(1): 101–110.
  • [50] Schurischuster, S., Remeseiro, B., Radeva, P. and Kampel, M. (2018). A preliminary study of image analysis for parasite detection on honey bees, in A. Campilho et al. (Eds), Image Analysis and Recognition. ICIAR 2018, Lecture Notes in Computer Science, Vol. 10882, Springer, Cham, pp. 465–473.
  • [51] Schurischuster, S., Zambanini, S. and Kampel, M. (2016). Sensor study for monitoring varroa mites on honey bees (Apis mellifera), Visual Observation and Analysis of Vertebrate and Insect Behavior Workshop, Cancun, Mexico, pp. 1–4.
  • [52] Stefanowski, J., Krawiec, K. and Wrembel, R. (2017). Exploring complex and big data, International Journal of Applied Mathematics and Computer Science 27(4): 669–679, DOI: 10.1515/amcs-2017-0046.
  • [53] Szczurek, A., Maciejewska, M., Wilk, J., Wilde, J. and Siuda, M. (2019). Detection of honeybee disease: Varrosis using a semiconductor gas sensor array, 8th International Conference on Sensor Networks, Prague, Czech Republic, pp. 58–66.
  • [54] Szczurek, A., Maciejewska, M., Zajiczek, Z., Wilk, J., Wilde, J. and Siuda, M. (2020). The effectiveness of Varroa destructor infestation classification using an e-nose depending on the time of day, Sensors 20(9): 2532.
  • [55] Süzen, A.A., Duman, B. and Şen, B. (2020). Benchmark analysis of jetson TX2, Jetson Nano and Raspberry Pi using deep-CNN, 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, pp. 1–5.
  • [56] van der Sluijs, J.P., Simon-Delso, N., Goulson, D., Maxim, L., Bonmatin, J.-M. and Belzunces, L.P. (2013). Neonicotinoids, bee disorders and the sustainability of pollinator services, Current Opinion in Environmental Sustainability 5(3): 293–305.
  • [57] Van Goethem, S., Verwulgen, S., Goethijn, F. and Steckel, J. (2019). An IoT solution for measuring bee pollination efficacy, 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, pp. 837–841.
  • [58] van Engelsdorp, D., Traynor, K.S., Andree, M., Lichtenberg, E.M., Chen, Y., Saegerman, C. and Cox-Foster, D.L. (2017). Colony collapse disorder (CCD) and bee age impact honey bee pathophysiology, PLOS ONE 12(7): 1–23.
  • [59] van Engelsdorp, D., Underwood, R., Caron, D. and Hayes, J. (2007). An estimate of managed colony losses in the winter of 2006–2007: A report commissioned by the apiary inspectors of America, American Bee Journal 147(7): 599–603.
  • [60] Wojnakowski, M., Wiśniewski, R., Bazydło, G. and Popławski, M. (2021). Analysis of safeness in a Petri net-based specification of the control part of cyber-physical systems, International Journal of Applied Mathematics and Computer Science 31(4): 647–657, DOI: 10.34768/amcs-2021-0045.
  • [61] Zabasta, A., Zhiravetska, A., Kunicina, N. and Kondratjevs, K. (2019). Technical implementation of IoT concept for bee colony monitoring, 2019 8th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, pp. 1–4.
  • [62] Zacepins, A., Kviesis, A., Pecka, A. and Osadcuks, V. (2017a). Development of Internet of things concept for precision beekeeping, 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, pp. 23–27.
  • [63] Zacepins, A., Pecka, A., Osadcuks, V., Kviesis, A. and Engel, S. (2017b). Solution for automated bee colony weight monitoring, Agronomy Research 15(2): 585–593.
  • [64] Zgank, A. (2020). Bee swarm activity acoustic classification for an IoT-based farm service, Sensors 20(1): 1–14.
  • [65] Zgank, A. (2021). IoT-based bee swarm activity acoustic classification using deep neural networks, Sensors 21(3): 1–14.
  • [66] Zivkovic, Z. (2004). Improved adaptive Gaussian mixture model for background subtraction, Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, Vol. 2, pp. 28–31.
  • [67] Zivkovic, Z. and van der Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the task of background subtraction, Pattern Recognition Letters 27(7): 773–780.
  • [68] Zogovic, N., Mladenovic, M. and Raši´c, S. (2017). From primitive to cyber-physical beekeeping, 7th International Conference on Information Society and Technology, Kopaonik, Serbia, Vol. 1, pp. 38–43.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc613891-fb35-4135-b847-1ff975dfed84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.