PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation of Directional Solidification Process of Single Crystal Ni- Based Superalloy Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The analysis of influence of mould withdrawal rate on the solidification process of CMSX-4 single crystal castings produced by Bridgman method was presented in this paper. The predicted values of temperature gradient, solidification and cooling rate, were determined at the longitudinal section of casting blade withdrawn at rate from 1 to 6mm/min using ProCAST software. It was found that the increase of withdrawal rate of ceramic mould results in the decrease of temperature gradient and the growth of cooling rate, along blade height. Based on results of solidification parameter G/R (temperature gradient/solidification rate), maximum withdrawal rate of ceramic mould (3.5 mm/min), which ensures lower susceptibility to formation process of new grain defects in single crystal, was established. It was proved that these defects can be formed in the bottom part of casting at withdrawal rate of 4 mm/min. The increase of withdrawal rate to 5 and 6 mm/min results in additional growth of susceptibility of defects formation along the whole height of airfoil.
Rocznik
Strony
111--118
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology ul. W. Pola 2, 35-959 Rzeszów
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology ul. W. Pola 2, 35-959 Rzeszów
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology ul. W. Pola 2, 35-959 Rzeszów
Bibliografia
  • [1] Kubiak, K., Szeliga, D., Sieniawski J. & Onyszko, A. (2015). The Unidirectional Crystallization of Metals and Alloys (Turbine Blades). P Rudolph (Eds.), Handbook of Crystal Growth: Bulk Crystal Growth (Second Edition). 413-457. Elsevier. DOI: 10.1016/B978-0-444-63303-3.00011-0.
  • [2] Fraś, E., Guzik, E., Kapturkiewicz, W. & López, H.F. (1996). Processing and microstructure of investment casting turbine blade NITAC in-situ composites. Thermal and Mechanical Processing. Journal of Materials Engineering and Performance. 5(1), 103-110. DOI: 10.1007/ BF02647277.
  • [3] Szeliga, D., Kubiak, K., Ziaja, W. & Cygan, R. (2014). Influence of silicon carbide chills on solidification process and shrinkage porosity of castings made of nickel based superalloys. International Journal of Cast Metal Research. 27(3), 146-160. DOI: 10.1179/1743133613Y.0000000092.
  • [4] Szeliga, D., Kubiak, K., Cygan, R., Ziaja W. (2012). Application of Silicon Carbide Chills in Controlling the Solidification Process of Casts Made of IN-713C Nickel Superalloy. Archives of Foundry Engineering. 12(spec.2), 105–111.
  • [5] Szeliga, D., Kubiak, K. & Sieniawski, J. (2016). Control of liquidus isotherm shape during solidification of Ni-based superalloy of single crystal platforms. Journal of Materials Processing Technology. 232(8), 18-26. DOI: 10.1016/ j.jmatprotec.2016.03.003
  • [6] Fraś, E., Guzik E. & Lopez, H.F. (1988). Structure and mechanical properties of unidirectionally solidified Fe-Cr-C and Fe-Cr-X-C alloys. Metallurgical Transactions A. 19(5), 1235-1241. DOI: 10.1007/BF02662584.
  • [7] D’Souza, N., Jennings, P.A., Yang, X.L., Lee, P.D., McLean, M. & Dong, H.B. (2005). Seeding of single-crystal superalloys – role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth. Metallurgical and Materials Transactions B. 36(5), 657-666. DOI: 10.1007/s11663-005-0056-6.
  • [8] Toloraiya, V.N., Orekhov, N.G., Kablov, E.N. (2002). Advanced method for single crystal casting of turbine blades for gas turbine engines and plants. Metal Science and Heat Treatment. 44(7), 279–283. DOI: 10.1023/ A:1021299619346.
  • [9] Głownia, J. & Janas, A. (1987). Microsegregation in dendritic single crystals of nickel-rich alloys. Materials Science and Technology. 3(2), 149-154. DOI: 10.1179/mst.1987.3.2.149.
  • [10] Chmiela, B., Szeliga, D., Sozańska, M., Jarczyk, J. & Cwajna, J. (2013). Analysis of stray grain formation in single crystal CMSX-4 superalloy. Practical Metallography. 50(8), 548–560. DOI: 10.3139/147.110225.
  • [11] Szeliga, D., Kubiak, K. & Jarczyk, G. (2013). The influence of the radiation baffle on predicted temperature gradient in single crystal CMSX-4 castings. International Journal of Metalcasting. 7(3), 17-23. DOI: 10.1007/BF03355555.
  • [12] Yu, J., Xu Q., Liu, B., Li, J., Yuan, H. & Jin, H. (2008). Experimental Study and Numerical Simulation of Directionally Solidified Turbine Blade Casting. J. Mater. Sci. Technol. 24(3), 369-373.
  • [13] Xu, Q., Liu, B., Pan, D. & Yu, J. (2012). Progress on modeling and simulation of directional solidification of superalloy turbine blade casting. China Foundry. 9(1), 69-77.
  • [14] Xu, Q., Zhang, H. & Qi, X. (2014). Multiscale Modeling and Simulation of Directional Solidification Process of Turbine Blade Casting with MCA Method. Metall. and Mater. Trans. B. 45(2) 555-561. DOI:10.1007/s11663-013-9909-6.
  • [15] Yu, J., Xu, Q. Y., Liu, B. C., Li, J. R. & Yuan, H. L. (2007). Numerical Simulation of Unidirectional Solidification Process of Turbine Blade Castings. Advanced Materials Research. 26-28, 947-952. DOI:10.4028/www.scientific.net /AMR.26-28.947.
  • [16] Pan, D., Xu, Q. Y., Yu, J., Liu, B. C., Li, J. R., Yuan, H. L. & Jin, H.P. (2013). Numerical simulation of directional solidification of single crystal turbine blade casting. International Journal of Cast Metals Research. 21(1-4), 308-312. DOI.org/10.1179/136404608X362151.
  • [17] Yang, X.L., Dong, H.B., Wang, W. & Lee, P.D. (2004). Microscale simulation of stray grain formation in investment cast turbine blades. Materials Science and Engineering: A. 386(1-2), 129-139. DOI.org/10.1016/j.msea.2004.07.007.
  • [18] Gao, S.-F, Liu, L, Zhang, J., Xiao, J.-F., Tang, W.-S, Li, Y.-J. & Nan, Q. (2015). Simulation of stray grain formation at the platform during Ni-base single crystal superalloy DD403 casting. China Foundry. 12(2) 118-122.
  • [19] Pollock, T.M. & Murphy, W.H. (1996). The breakdown of single-crystal solidification in high refractory nickel–base alloys. Metallurgical and Materials Transactions A. 27(4), 1081–1094. DOI: 10.1007/BF02649777.
  • [20] Miller, J.D. & Pollock, T.M. (2014). Stability of dendrite growth during directional solidification in the presence of a non-axial thermal field. Acta Materialia. 78(10), 23-36. DOI:10.1016/j.actamat.2014.05.040.
  • [21] Mills, K.C. (2002). Recommended values of thermophysical properties for selected commercial alloys. Cambridge: Woodhead Publishing.
  • [22] Mochnacki, B., Suchy, J.S. (1993). Modeling and simulation of casting solidification. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
  • [23] Staniszewski, B. (1980). Heat exchange. Warszawa: WNT. (in Polish).
  • [24] Szeliga, D., Kubiak, K., Motyka, M. & Sieniawski, J. (2016). Directional solidification process of nickel based superalloy castings. Thermal analysis. Vacuum. 131(9), 327-342. DOI.org/10.1016/j.vacuum.2016.07.009.
  • [25] Elliott, A.J., Tin, S., King, W.T., Huang, S.C., Gigliotti, M.F.X. & Pollock, T.M. (2004). Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment. Metallurgical and Materials Transactions A. 35(10), 3221-3231. DOI: 10.1007/s11661-004-0066-z.
  • [26] Miller, J. D. & Pollock, T. M. (2012). Process simulation for the directional solidification of a tri-crystal ring segment via the bridgman and liquid-metal-cooling processes. Metallurgical and Materials Transactions A. 43(7), 2414-2425. DOI: 10.1007/s11661-012-1104-x
  • [27] Wilson, B.C., Cutler, E.R. & Fuchs, G.E. (2008). Effect of solidification parameters on the microstructures and properties of CMSX-10. Materials Science and Engineering A. 479(4), 356-364. DOI:10.1016/j.msea.2007.07.030.
  • [28] Sato, A., Harada, H., Yeh, A.C., Kawagishi, K., Kobayashi T., Koizumi, Y., Yokokawa, T. & Zhang, J.X. (2008). A 5th generation SC superalloy with balanced high temperature properties and processability. Superalloys 2008 (pp. 131–138). The Mineral Metals and Materials Society 10.7449/2008/Superalloys_2008_131_138.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc608ecb-200f-4d8d-bd75-a4976e991da6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.