PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the capabilities of satellite images alsat 2-a for emergency mapping in urban areas, case of the city of m’sila (Algeria)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we will show the capabilities and limitations of Alsat-2 images in mapping urban areas in emergency situation. The aim of the research was to provide urban information that is geo-referenced in real time during natural disasters (floods, earthquakes). It’s important for fast decision-making so that they will be a necessary support for the estimation of the damages. The following study tests the spatial and radiometric quality of Alsat 2-A images and proposes technical solutions for theiruse in urban mapping. In order to identify and extract the ground realities, we shall describe and make an effort to discern the perceptible aspects of features in urban area. The adopted methodology carries out a statistical analysis of the information extracted from Alsat-2 images of the studied area (the city of M’Sila, Algeria) using classification and segmentation methods. The statistics will show the percentage of the area in relation to the total size of geometric surface and the distance for linear objects. As a result, the quality of the extracted urban texture necessary for urban mapping will be determined. Image processing to improve resolution quality was carried out using merging method. However, the analysis of consistency and discrepancy of these statistics will be done by comparing samples of field data using confusion matrix.
Rocznik
Tom
Strony
109--122
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • University of M’Sila, Algeria Laboratory Smart City, Geomatics and Gouvernance
autor
  • University of M’Sila, Algeria Faculty of Math and Computer Sciences
Bibliografia
  • Armand M. 2016. Images satellitaires et planification des villes du Tiers-Monde. Mondes en développement, 176(4), 169. https://doi.org/10.3917/med.176.0169
  • Benblidia et al. 2006. Utilisation de la morphologie mathématique pour l’analyse de l’occupation de l’espace en zones urbaines et périurbaines présahariennes: cas de Laghouat (Algérie), Semantic Scholar (s.d.). Consulté 9 avril 2020. https://www.semanticscholar.org/paper/UTILISATION-DE-LA-MORPHOLOGIE-MATH%C3%89MATIQUE-POUR-DE-BenblidiaAbdellaoui/1babe534de3f5a693287c66572d43beb593de31f
  • Benza M., Weeks J.R., Stow D.A., López-Carr D., Clarke K.C. 2016. A pattern-based definition of urban context using remote sensing and GIS. Remote Sensing of Environment, 183, 250–264. https://doi.org/10.1016/j.rse.2016.06.011
  • Bhatta B., Saraswati S., Bandyopadhyay D. 2010. Urban sprawl measurement from remote sensing data. Applied Geography, 30(4), 731–740. https://doi.org/10.1016/j.apgeog.2010.02.002
  • Blaschke T. 2009. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing.
  • Brown M., McCarty J. 2017. Is remote sensing useful for finding and monitoring urban farms? Applied Geography, 80, 23–33. https://doi.org/10.1016/j.apgeog.2017.01.008
  • Delavaud A. 2000. L’apport des images satellitaires dans l’étude des dynamiques de l’occupation du sol des villes d’Amérique Latine. Cybergeo. https://doi.org/10.4000/cybergeo.722
  • Donnay J.-P., Barnsley M.J., Longley P.A. (eds.). 2000. Remote Sensing and Urban Analysis: GISDATA 9. CRC Press. https://doi.org/10.1201/9781482268119
  • Dubois J.-M., Donnay J.-P., Ozer A., Boivin F., Lavoie A. 1997. Télédétection des milieux urbains et périurbains. AUPELF-UREF. https://orbi.uliege.be/handle/2268/20540
  • Gadal S., Gilg J.P., Biraud I. 2012. Caractérisation des zones urbaines par télédétection spatiale. IX èmes Journées du Réseau Télédétection, AUF.
  • Haddanou M. 2005. Les spécifications cartographiques en usage à l’INCT. Le bulletin interne de l’Institut National de Cartographie et de Télédétection, édition spéciale, 3, 15.
  • Hossain M.D., Chen D. 2019. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 115–134. https://doi.org/10.1016/j.isprsjprs.2019.02
  • Hrvatin M., Perko D. 2003. Surface roughness and land use in Slovenia/Razgibanost površja in raba tal v Sloveniji. Acta Geographica Slovenica, 43-2. DOI: https://doi.org/10.3986/ AGS43202
  • Kourgli A., Belhadj-Aissa A. 2003. Segmentation texturale des images urbaines par le biais de l’analyse variographique. Télédétection, 337–348.
  • Leichtle T., Geiß C., Wurm M., Lakes T., Taubenböck H. 2017. Unsupervised change detection in VHR remote sensing imagery – an object-based clustering approach in a dynamic urban environment. International Journal of Applied Earth Observation and Geoinformation, 54, 15–27. https://doi.org/10.1016/j.jag.2016.08.010
  • Lhomme. 2005. Identification di bâti à partir d’images satellitaires à très haute résolutions spatiales, thèse de doctorat en télédétection. Université de Sherbrooke, Canada.
  • Matgen P., Hostache R., Schumann G., Pfister L., Hoffmann L., Savenije H.H.G. 2011. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Physics and Chemistry of the Earth. Parts A/B/C, 36(7), 241–252. https://doi.org/10.1016/j.pce.2010.12.009
  • Medjadj T. 2018. Vers une nouvelle approche pour calculer les indicateurs de la densité urbaine via l’imagerie de satellite Alsat-2A. Bulletin des sciences géographiques, 36–43.
  • Messier N., Cavayas F., André P. 2001. Cartographie de l’occupation du sol en milieu urbain à partir d’images satellites de haute résolution spatiale, le cas de Beijing (Chine).
  • Michel A. 1988. (PDF) Segmentation et classification sur une image satellite SPOT en milieu urbain: Application à la ville de Quito (Equateur). Research Gate. https://www.researchgate.net/publication/32982700_Segmentation_et_classification_sur_une_image_satellite_SPOT_en_milieu_urbain_application_a_la_ville_de_Quito_Equater
  • Mohammadzadeh A., Tavakoli A., Valadan Zoej M.J. 2006. Road extraction based on fuzzy logic and mathematical morphology from pan-sharpened ikonos images. The Photogrammetric Record, 21(113), 44–60. https://doi.org/10.1111/j.1477-9730.2006.00353.x
  • MRE. 2019. Conférence Nationale sur les risques majeurs. Prise en charge de la problématique des inondations, Alger.
  • Ourabia S., Smara Y. 2016. A New Pansharpening Approach Based on Non Subsampled Contourlet Transform Using Enhanced PCA Applied to SPOT and ALSAT-2A Satellite Images. J. Indian. Soc. Remote Sens., 44, 665–674. https://doi.org/10.1007/s12524-016-0554-9
  • Pesaresi M., Benediktsson J.A. 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(2), 309–320. https://doi.org/10.1109/36.905239
  • Pony O., Descombes X., Zerubia J. 2000. Classification d’images satellitaires hyperspectrales en zone rurale et périurbaine [Report, INRIA]. https://hal.inria.fr/inria-00072636
  • Puissant A., Weber C. 2003. Les images à très haute résolution, une source d’information géographique en milieu urbain?: État des lieux et perspectives. Espace géographique, 32(4), 345. https://doi.org/10.3917/eg.324.0345
  • Ranchin T., Wald L. 1995. Fusion d’images HRV de SPOT panchromatique et multibande à l’aide de la méthode ARSIS: Apports à la cartographie urbaine. Actes des 6 èmes journées scientifiques du Réseau Télédétection de l’AUPELF-UREF: Télédétection des milieux urbains et périurbains.
  • RGPH. 2008. Office National des Statistique.
  • Shan Yu, Berthod M., Giraudon G. 1999. Toward robust analysis of satellite images using map information-application to urban area detection. IEEE Transactions on Geoscience and Remote Sensing, 37(4), 1925–1939. https://doi.org/10.1109/36.774705
  • Shen P., Zhang J., Su Z. 2011. The Application of Remote Sensing in the Extraction of Urban Land Use Changes. Procedia Environmental Sciences, 10, 1589–1594. https://doi.org/10.1016/j. proenv.2011.09.252
  • Singh P.P, Garg R.D. 2012. Automatic Road Extraction from High Resolution Satellite Image using Adaptive Global Thresholding and Morphological Operations. Journal of the Indian Society of Remote Sensing, 41. https://doi.org/10.1007/s12524-012-0241-4
  • Song J., Gao S., Zhu Y., Ma C. 2019. A survey of remote sensing image classification based on CNNs. Big Earth Data, 3(3), 232–254. https://doi.org/10.1080/20964471.2019.1657720
  • Sparfel L., Gourmelon F., Le Berre I. 2008. Approche orientée-objet de l’occupation des sols enzone côtière. Revue Télédétection, 8, 4, 237–256.
  • Taubenböck H., Standfuß I., Wurm M., Krehl A., Siedentop S. 2017. Measuring morphological polycentricity. A comparative analysis of urban mass concentrations using remote sensing data. Computers, Environment and Urban Systems, 64, 42–56. https://doi.org/10.1016/j. compenvurbsys. 01.005 UNSD – Welcome to UNSD. Consulté 1 mars 2022. https://unstats.un.org/home/
  • Van der Kwast J., Canters F., Karssenberg D., Engelen G., Van de Voorde T., Uljee I., de Jong K. 2011. Remote sensing data assimilation in modeling urban dynamics: Objectives and methodology. Procedia Environmental Sciences, 7, 140–145. https://doi.org/10.1016/j. proenv.2011.07.025
  • Van der Linden S., Okujeni A., Canters F., Degerickx J., Heiden U., Hostert P., Priem F., Somers B., Thiel F. 2019. Imaging Spectroscopy of Urban Environments. Surveys in Geophysics, 40(3), 471–488. https://doi.org/10.1007/s10712-018-9486-y
  • Wang L., Shi C., Diao C., Ji W., Yin D. 2016. A survey of methods incorporating spatial information in image classification and spectral unmixing. International Journal of Remote Sensing, 37(16), 3870–3910. https://doi.org/10.1080/01431161.2016.1204032
  • Weng Q. 2012. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49. https://doi.org/10.1016/j.rse.2011.02.030
  • Zhang R., Lin X. 2010. Automatic road extraction based on local histogram and support vector data description classifier from very high resolution digital aerial. 2010 IEEE International Geoscience and Remote Sensing Symposium, 441–444. https://doi.org/10.1109/IGARSS.2010.5654117
  • Zhu Q., Zhong Y., Liu Y., Zhang L., Li D. 2018. A Deep-Local-Global Feature Fusion Framework for High Spatial Resolution Imagery Scene Classification. Remote Sensing, 10. https://doi.org/10.3390/rs10040568
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc5efc23-4d53-4b4d-a3ad-378e2af23628
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.