PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of the foaming performance of ammonium dibutyl dithiophosphate on the flotation of slime-containing copper sulfide ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of ammonium dibutyl dithiophosphate (ADD) as a collector in the flotation of slimecontaining copper sulfide ore typically produces a sticky froth, which results in poor flotation. The mechanism and effects of copper sulfide ore flotation in synergistic systems comprising ADD and terpenic oil reagents have been systematically investigated to solve this problem. A high ratio of ADD to terpenic oil is not conducive to the flotation of fine-grained copper sulfide ores; however, adjusting this ratio may improve floatation by reducing the effect of the slime. Lowering the ratio from 5:1 to 1:1 increased the copper grade from 17.7% to 20.8%, while the recovery was largely unchanged. Notably, adjusting this ratio also reduced the cost of the flotation reagent. To study the mechanism by which the ADD–to–terpenic oil ratio affects the foam performance, the froth stability tests of the gas–liquid twophase and gas–liquid–solid three-phase systems were performed. Reducing the proportion of ADD reduced the froth water content and weakened the ability of the froth to collect gangue by adsorbtion with copper ions; this reduced gangue entrainment and maximized recovery and product quality.
Rocznik
Strony
art. no. 153492
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • School of chemical engineering, Fuzhou University, Fuzhou 350108, China
Bibliografia
  • AKDEMIR, Ü., GULER, T., YILDIZTEKIN, G., 2010. Flotation and entrainment behavior of minerals in talc- calcite separation, Scand. J. Metall. 34, 241-244.
  • ATA, S., 2011. Phenomena in the froth phase of flotation — A review. Int. J. Miner. Process. 102-103, 1-12.
  • CHENG, P., SUN, W., HU, Y.H., Liu, R.Q., 2018. Effect and mechanism of frothers on flotation of fine serpentine. J. Cent. South Univ. (Sci. Technol.) 49, 261-267.
  • CHO, Y.S., LASKOWSKI, J.S., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Process. 64, 69-80.
  • EKMEKCI, Z., BRADSHAW, D.J., ALLISON S.A., HARRIS, P.J., 2003. Effects of frother type and froth height on the flotation behaviour of chromite in UG2 ore. Miner. Eng. 16, 941-949.
  • HADLER, K., CLIILERS, J.J., 2019. The effect of particles on surface tension and flotation froth stability. Min., Metall., Explor. 36, 63–69.
  • KRUGLYAKOV, P.M., KARAKASHEV, S.I., NGUYEN, A.V., 2008. Foam drainage. Curr. Opin. Colloid Interface Sci. 13, 163-170.
  • LUO, S.G., ZHAO, Z.Q., LIU, J.Y., HU, Y.J., HE, Z., 2018. Application Research of New Collector BKG721 in Flotation of Precious Metal Ore. Nonferrous Met. (Miner. Process. Sect.) 04, 85-88. (in chinese).
  • LI, Y.G., HONAKER, R., CHEN, J.Z., SHEN, L.J., 2016. Effect of particle size on the reverse flotation of subbituminous coal. Powder Technol. 301, 323-330.
  • MCFADZEAN, B., MAROZVA, T., WIESE, J., 2016. Flotation frother mixtures: decoupling the sub-processes of Roth stability,froth recovery and entrainment. Miner. Eng. 85, 72-79.
  • NI, C., XIE, G.Y., JIN, M.G., PENG, Y.L., XIA, W.C., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol. 292, 210-216.
  • PANG, W.H., LIU, Q.J., PENG, D., 2013. Experimental Study on Mineral Processing of Carlin-Type Gold Deposits In Guizhou. Adv. Mater. Res. 756-759, 41-43.
  • PIENAAR, D., JORDAAN, T., MCFADZEAN, B., O'CONNOR, C.T., 2019. The synergistic interaction between dithiophosphate collectors and frothers at the air-water and sulphide mineral interface. Miner. Eng. 138, 125-132.
  • RUBY, K., MAJUMDER, S.K., 2018. Studies on stability and properties of micro and nano-particle-laden ionic microbubbles, Powder Technol. 335, 77-90.
  • WANG, D., LIU, Q., 2021. Hydrodynamics of froth flotation and its effects on fine and ultrafine mineral particle flotation: A literature review. Miner. Eng. 173, 107220.
  • WANG, L., PENG, Y., RUNGE, K., 2017. The mechanism responsible for the effect of frothers on the degree of entrainment in laboratory batch flotation. Miner. Eng. 100, 124-131.
  • WANG, X., QIN, W., JIAO, F., YANG, CR., CUI, Y.F., LI, W., ZHANG, Z.Q., SONG, H., 2019. Mineralogy and Pretreatment of a Refractory Gold Deposit in Zambia. Miner. 9, 406.
  • WEI, Y., SANDENBERGH, R.F., 2007. Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore. Miner. Eng. 20, 264-272.
  • WU, Z.X., TAO, D.P., Zhang, P., Jiang, X.J., Jiang, M., 2021. Synergistic Effect of DBP with CTAB on Flotation Separation of Quartz from Collophane. Miner. 11, 1196.
  • XING, Y.W., GUI, X.H., CAO, Y.J., WANG, Y.W., XU, M.D., WANG, D.Y., LI, C.W., 2017. Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal. Powder Technol. 305, 166-173.
  • XING, Y.W., GUI, X.H., CAO, Y.J., 2017. Effect of bubble size on bubble-particle attachment and film drainage kinetics – A theoretical study. Powder Technol. 322, 140-146.
  • YU, H.R., NARUSAWA, H., ITOH, K., OSHI, A., YOSHINO, N., OHBU, K., SHIRAKAWA, T., FUKADA, K., FUJII, M., KATO, T., SEIMIYA, T., 2000. Hydrophilicity of Polar and Apolar Domains of Amphiphiles. J. Colloid Interface Sci. 229, 375-390.
  • YIN, W.Z., YANG, B., FU, Y.F., CHU, F.D., YAO, J., CAO, S.H., ZHU, Z.L., 2019. Effect of calcium hypochlorite on flotation separation of covellite and pyrite. Powder Technol. 343, 578-585.
  • ZHANG, T., QIN, W.Q., 2015. Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium di butyl dithiophosphate. J. Cent. South Univ. 22, 1232-1240.
  • ZHENG, X., JOHNSON, N.W., FRANZIDIS, J.-P., 2006. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 19, 1191-1203.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc5bea7a-4d9c-4847-bc33-cb1fceb48105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.