PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of subgrid modelling and numerical method on autoignition simulation of two-phase flow

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work focuses on analyses of the autoignition delay time predicted by the large eddy simulation (LES) method by applying different subgrid scales (SGS) models and two different discretization schemes. The analysed flow configuration is a two-phase chemically reacting turbulent flow with monodispersed evaporating fuel droplets. The impact of numerical procedure is investigated in a 3D flow domain with a temporally evolving mixing layer that constituted between the streams of fuel and oxidizer that moved in opposite directions. The upper stream of cold gas carries a dispersed fuel spray (ethanol at 300 K). The lower stream is a hot air at 1000 K. Three commonly used in LES, SGS models are investigated, namely: classical Smagorinsky model, model proposed by Vreman and the σ-model proposed by Nicoud. Additionally, the impact of two discretization schemes, i.e., total variation diminishing (TVD) and weighted essentially nonoscillatory (WENO) is analysed. The analysis shows that SGS model and discretization scheme can play a crucial role in the predictions of the autoignition time. It is observed that for TVD scheme the impact of SGS model is rather small. On the contrary, when the WENO scheme is applied the results are much more dependent on the SGS model.
Rocznik
Strony
55--72
Opis fizyczny
Bibliogr. 26 poz., rys., wz.
Twórcy
autor
  • Czestochowa University of Technology, Institute of Thermal Machinery, Faculty of Mechanical Engineering and Computer Science, Armii Krajowej 21, 42-201 Czestochowa, Poland
Bibliografia
  • [1] Smagorinsky J.: General circulation experiments with the primitive equations. Mon. Wea. 91(1963), 3, 99–164.
  • [2] Vreman A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(2004), 4, 3670–3681.
  • [3] Nicoud F., Toda H. B., Cabrit O., Bose S., Lee J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(2011), 8, 1–12.
  • [4] Chakraborty N.A., Mastorakos E., Cant S.: Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study. Combust. Sci. Technol. 179(2007), 1-2, 293–317.
  • [5] Hilbert R. Thevenin D.: Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust. Flame 128(2002), 1-2, 22–37.
  • [6] Duwig C., Nogenmyr K. J., Chan C., Dunn M. J.: Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theor. Model. 15(2011), 4, 537–568.
  • [7] Stempka J., Kuban L., Bogusławski A., Tyliszczak A.: DNS and ILES study of ethanol spray auto-ignition in a time-evolving mixing layer. In: Proc. 8th European Combustion Meeting, Dubrovnik 2017, 1076–1081.
  • [8] Jaegle F.: Large eddy simulation of evaporating sprays in complex geometries using Eulerian and Lagrangian methods. PhD thesis, Institut National Polytechnique de Toulouse – INPT, Toulouse 2009.
  • [9] Geurts B.: Elements of direct and large-eddy simulation. R.T. Edwards, Inc., Philadelphia 2003.
  • [10] Favre A.: Turbulence: space-time statistical properties and behaviour in supersonic flows. Phys. Fluids 26(1983), 10, 2851–2863.
  • [11] Jones W.P., Marquis A.J., Vogiatzaki K.: Large-eddy simulation of spray combustion in a gas turbine combustor. Combust. Flame 161 (2014), 1, 222–239.
  • [12] Sagaut P., Deek S., Terracol M.: Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press, London 2006.
  • [13] Tyliszczak A.: High-order compact difference algorithm on half-staggered meshes for low Mach number flows. Comput. Fluids 127(2016), 131–145.
  • [14] Maxey M. R., Riley J. J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(1983), 4, 883–889.
  • [15] Spalding D.B.: Experiments on the burning and extinction of liquid fuel spheres. Fuel 32(1953), 169–185.
  • [16] Abramzon B., Sirignano W.A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Tran. 32(1989), 9, 1605–1618.
  • [17] Pino Martin M.: Subgrid-scalem models for compressible large-eddy simulations. Theor. Comp Fluid Dyn. 13(2000), 5, 361–376.
  • [18] Vreman B., Geurts B., Kuerten H.: A priori test of large eddy simulation of the compressible turbulence. J. Eng. Math. 29(1995), 4, 299–327.
  • [19] Baya Toda H., Cabrit O., Balarac G., Bose S., Lee J., Choi H., Nicoud F.: A subgrid-scale model based on singular values for LES in complex geometries. Centre for Turbulence Research. Proc. Summer Program, 2010, 193–202.
  • [20] Tyliszczak A.: Physics of Fluids (1994-present) Phys. Fluids 27(2015), 041703.
  • [21] Hirsch C.: Numerical Computation of Internal and External Flows. John Wiley & Sons, New Jersey 2001.
  • [22] Shu C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.), Cetraro, (2006), 325–432.
  • [23] Kosowska-Golachowska M. Kijo-Kleczkowska A., Luckos A., Wolski K., Musiał T.: Oxy-combustion of biomass in a circulating fluidized bed. Arch. Thermodyn. 37(2016), 1, 17–30.
  • [24] Ma Z., Chen H., Zhang Y.: Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine. Arch. Thermodyn. 38(2017), 3, 63–75
  • [25] Hnydiuk-Stefan A., Składzień J.: The analysis of parameters of the cryogenic oxygen unit cooperating with power plant to realize oxy-fuel combustion. Arch. Thermodyn. 36(2015), 1, 39–54.
  • [26] Faeth G.M.: Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3(1977), 191–224.
Uwagi
EN
This work was supported by grant 2015/17/B/ST8/03217 (National Science Centre, Poland) and statutory funds BS/PB-1-103-3010/11/P.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc5b8866-2390-4d42-a8ed-4d3fcfb901f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.