PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Economic analysis and the EEXI reduction potential of parallel hybrid dual-fuel engine‒fuel cell propulsion systems for LNG carriers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One potential solution for reducing carbon dioxide emissions from ships and meeting the Energy Efficiency Existing Ship Index (EEXI) requirements is to use a hybrid propulsion system that combines liquid hydrogen and liquefied natural gas fuels. To improve energy efficiency for diesel-electric dual-fuel ship propulsion systems, an engine power limitation system can also be used. This paper examines the potential use of these systems with regard to several factors, including compliance with EEXI standards set by the International Maritime Organization, fuel ratio optimisation, installation requirements, and economic feasibility. As a case study, an LNG carrier is analysed, with dual-fuel diesel-electric and two hybrid systems adjusted to meet IMO-EEXI requirements with engine power limitation percentages of 25%, 0% (hybrid option 1), and 15% (hybrid option 2), respectively. From an economic standpoint, the liquid hydrogenbased system has competitive costs compared to the dual-fuel diesel-electric system, with costs of 2.1 and 2.5 dollars per kilogram for hybrid system options 1 and 2, respectively.
Słowa kluczowe
Rocznik
Tom
Strony
59--70
Opis fizyczny
Bibliogr. 60 poz., rys., tab.
Twórcy
  • Department of Marine Engineering, Faculty of Maritime Studies, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Alexandria University, Egypt
autor
  • Department of Marine Engineering, Faculty of Maritime Studies, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Department of Marine Engineering, Faculty of Maritime Studies, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • 1. H. Huang et al., “Inland ship emission inventory and its impact on air quality over the middle Yangtze River, China,” Sci. Total Environ., vol. 843, p. 156770, 2022, https:// doi.org/10.1016/j.scitotenv.2022.156770.
  • 2. B. Ryu, P. A. Duong, and H. Kang, “Comparative analysis of the thermodynamic performances of solid oxide fuel cell–gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels,” Int. J. Nav. Arch. Ocean Eng., p. 100524, 2023, https://doi.org/10.1016/j. ijnaoe.2023.100524.
  • 3. N. R. Ammar and I. S. Seddiek, “Hybrid/dual fuel propulsion systems towards decarbonization: Case study container ship,” Ocean Eng., vol. 281, p. 114962, 2023, https://doi.org/10.1016/j.oceaneng.2023.114962.
  • 4. M. M. Elgohary, I. S. Seddiek, and A. M. Salem, “Overview of alternative fuels with emphasis on the potential of liquefied natural gas as future marine fuel,” Proc. IMechE, Part M: Journal of Engineering for the Maritime Environment, vol. 229, no. 4, pp. 365-375, 2014, doi: 10.1177/1475090214522778.
  • 5. V. Yalama, O. Yakovleva, V. Trandafilov, and M. Khmelniuk, “Future sustainable maritime sector: Fishing carriers and their adoption to the environmental regulations. Part I,” Pol. Marit. Res., vol. 29, no. 3, pp. 69-77, 2022, doi:10.2478/ pomr-2022-0027.
  • 6. O. Konur, M. Bayraktar, M. Pamik, B. Kuleyin, and M. Nuran, “The energy efficiency gap in Turkish maritime transportation,” Pol. Marit. Res., vol. 26, no. 3, pp. 98-106, 2019, doi:10.2478/pomr-2019-0050.
  • 7. IMO, “Resolution MEPC.254(67). Guidelines on survey and certification of the energy efficiency design index (EEDI). International Maritime Organization,” 2014.
  • 8. IMO, “Energy efficiency of ships, comments received by the correspondence group on possible introduction of EEDI Phase 4, Submitted by Japan. Marine environment protection committee, 75th session agenda item 6,” 2019.
  • 9. IMO, “Fourth IMO Greenhouse Gas Study 2020: Safe, secure and efficient shipping on clean oceans,” London: International Maritime Organization (IMO), 2020.
  • 10. M. Kalajdžić, M. Vasilev, and N. Momčilović, “Evaluating an inland waterway cargo vessel’s energy efficiency indices,” Pol. Marit. Res., vol. 29, no. 2, pp. 27-34, 2022, doi:10.2478/ pomr-2022-0014.
  • 11. V. Yalama, O. Yakovleva, V. Trandafilov, and M. Khmelniuk, “Future sustainable maritime sector: Energy efficiency improvement and environmental impact reduction for fishing carriers older than 20 years in the fleet Part II,” Pol. Marit. Res., vol. 29, no. 3, pp. 78-88, 2022, doi:10.2478/ pomr-2022-0028.
  • 12. M. Bayraktar and O. Yuksel, “A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations,” Ocean Eng., vol. 278, p. 114295, 2023, https://doi.org/10.1016/j. oceaneng.2023.114295.
  • 13. E. Czermański et al., “Implementation of the Energy Efficiency Existing Ship Index: An important but costly step towards ocean protection,” Marine Policy, vol. 145, p. 105259, 2022, https://doi.org/10.1016/j.marpol.2022.105259.
  • 14. F. Baldi and A. Coraddu, “Appendix B - Towards halving shipping GHG emissions by 2050: the IMO introduces the CII and the EEXI,” in Sustainable Energy Systems on Ships, F. Baldi, A. Coraddu, and M. E. Mondejar, Eds. Elsevier, 2022, pp. 513-517.
  • 15. A. Farkas, N. Degiuli, I. Martić, and C. G. Grlj, “Is slow steaming a viable option to meet the novel energy efficiency requirements for containerships?” J. Clean. Prod., vol. 374, p. 133915, 2022, https://doi.org/10.1016/j.jclepro.2022.133915.
  • 16. M. Schroer, G. Panagakos, and M. B. Barfod, “An evidence-based assessment of IMO’s short-term measures for decarbonizing container shipping,” J. Clean. Prod., vol. 363, p. 132441, 2022, https://doi.org/10.1016/j. jclepro.2022.132441.
  • 17. H. Wang, Y. Hou, Y. Xiong, and X. Liang, “Research on multiinterval coupling optimization of ship main dimensions for minimum EEDI,” Ocean Eng., vol. 237, p. 109588, 2021, https://doi.org/10.1016/j.oceaneng.2021.109588.
  • 18. S. E. Damian et al., “Review on the challenges of hybrid propulsion system in marine transport system,” Journal of Energy Storage, vol. 56, p. 105983, 2022, https://doi. org/10.1016/j.est.2022.105983.
  • 19. S. Hyeon, J. Lee, and J. Choi, “Evaluation of fuel gas supply system for marine dual-fuel propulsion engines using LNG and ammonia fuel,” Energies, vol. 15, no. 17, doi: 10.3390/ en15176303.
  • 20. Á. Benet, A. Villalba-Herreros, R. d’Amore-Domenech, and T. J. Leo, “Knowledge gaps in fuel cell-based maritime hybrid power plants and alternative fuels,” J. Power Sources, vol. 548, p. 232066, 2022, https://doi.org/10.1016/j. jpowsour.2022.232066.
  • 21. J. Ahn, S. H. Park, S. Lee, Y. Noh, and D. Chang, “Molten carbonate fuel cell (MCFC)-based hybrid propulsion systems for a liquefied hydrogen tanker,” Int. J. Hydrogen Energ., vol. 43, no. 15, pp. 7525-7537, 2018, https://doi. org/10.1016/j.ijhydene.2018.03.015.
  • 22. L. van Biert and K. Visser, “Chapter 3 - Fuel cells systems for sustainable ships,” in Sustainable Energy Systems on Ships, F. Baldi, A. Coraddu, and M. E. Mondejar, Eds. Elsevier, 2022, pp. 81-121.
  • 23. S. A. Korkmaz, K. E. Erginer, O. Yuksel, O. Konur, and C. O. Colpan, “Environmental and economic analyses of fuel cell and battery-based hybrid systems utilized as auxiliary power units on a chemical tanker vessel,” Int. J. Hydrogen Energ., 2023, https://doi.org/10.1016/j.ijhydene.2023.01.320.
  • 24. Z. Chen, Y. Chen, W. Wang, K. Lu, H. Yang, and W. Zhu, “Failure pressure analysis of hydrogen storage pipeline under low temperature and high pressure,” Int. J. Hydrogen Energ., vol. 45, no. 43, pp. 23142-23150, 2020, https://doi. org/10.1016/j.ijhydene.2020.06.129.
  • 25. Y. Rong et al., “Techno-economic analysis of hydrogen storage and transportation from hydrogen plant to terminal refueling station,” Int. J. Hydrogen Energ., 2023, https://doi. org/10.1016/j.ijhydene.2023.01.187.
  • 26. A. Farsi and M. A. Rosen, “PEM fuel cell-assisted lithium ion battery electric vehicle integrated with an air-based thermal management system,” Int. J. Hydrogen Energ., vol. 47, no. 84, pp. 35810-35824, 2022, https://doi.org/10.1016/j. ijhydene.2022.08.153.
  • 27. A. Pramuanjaroenkij and S. Kakaç, “The fuel cell electric vehicles: The highlight review,” Int. J. Hydrogen Energ., vol. 48, no. 25, pp. 9401-9425, 2023, https://doi.org/10.1016/j. ijhydene.2022.11.103.
  • 28. A. S. Mohammed, S. M. Atnaw, A. O. Salau, and J. N. Eneh, “Review of optimal sizing and power management strategies for fuel cell/battery/super capacitor hybrid electric vehicles,” Energy Reports, vol. 9, pp. 2213-2228, 2023, https://doi.org/10.1016/j.egyr.2023.01.042.
  • 29. Marine Traffic, “MOZAH, LNG TankerLNG Tanker IMO: 9337755,” https://www.marinetraffic.com/en/ais/details/ ships/shipid:712524/mmsi:538003212/imo:9337755/ vessel:MOZAH (accessed 25 March 2023.
  • 30. Vessel tracking, “MOZAH (IMO 9337755) - LNG Tanker,” https://www.vesseltracking.net/ship/mozah-9337755 (accessed 25 March 2023.
  • 31. M. S. Khan et al., “Graphical approach for estimating and minimizing boil-off gas and compression energy consumption in LNG regasification terminals,” J. Nat. Gas Sci. Eng., vol. 101, p. 104539, 2022, https://doi.org/10.1016/j. jngse.2022.104539.
  • 32. Qatar Energy, “Ports Info rmation,” https://www. qatarenergy.qa/en/MarketingAndTrading/Pages/ PortsInformation.aspx (accessed 3 March 2023.
  • 33. Statista, “Distribution of liquefied natural gas imported into India in 2021, by country of origin,” https://www. statista.com/statistics/1237488/lng-import-share-indiaby-country/#:~:text=India’s%20primary%20supplier%20 of%20liquefied,world’s%20fourth%2Dlargest%20 LNG%20importer (accessed 2 March 2023.
  • 34. Ballard, “Fuel cell power module for marine applications,” https://www.ballard.com/docs/default-source/spec-sheets/ fcwavetm-specification-sheet.pdf?sfvrsn=6e44dd80_12 (accessed 2 February 2023.
  • 35. M. Cavo, E. Gadducci, D. Rattazzi, M. Rivarolo, and L. Magistri, “Dynamic analysis of PEM fuel cells and metal hydrides on a zero-emission ship: A model-based approach,” Int. J. Hydrogen Energ., vol. 46, no. 64, pp. 3263032644, 2021, https://doi.org/10.1016/j.ijhydene.2021.07.104.
  • 36. S. Dirkes, J. Leidig, P. Fisch, and S. Pischinger, “Prescriptive lifetime management for PEM fuel cell systems in transportation applications, Part I: State of the art and conceptual design,” Energ. Convers. Manage., vol. 277, p. 116598, 2023, https://doi.org/10.1016/j. enconman.2022.116598.
  • 37. Y. Wang and L. A. Wright, “A comparative review of alternative fuels for the maritime sector: Economic, technology, and policy challenges for clean energy implementation,” World, vol. 2, no. 4, pp. 456-481, 2021, doi: 10.3390/world2040029.
  • 38. R. Jing et al., “Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system,” Energ. Convers. Manage., vol. 154, pp. 365-379, 2017, https://doi.org/10.1016/j.enconman.2017.11.035.
  • 39. H. Xing, C. Stuart, S. Spence, and H. Chen, “Fuel cell power systems for maritime applications: Progress and perspectives,” Sustainability, vol. 13, no. 3, 2021, doi: 10.3390/su13031213.
  • 40. X. Tian, W. Jiao, L. Ren, S. Liu, and T. Liu, “Research on climate zoning indicators for operating environment of liquefied natural gas ambient air vaporizer,” Sustainable Cities and Society, vol. 60, p. 102186, 2020, https://doi. org/10.1016/j.scs.2020.102186.
  • 41. M. Sermsuk, Y. Sukjai, M. Wiboonrat, and K. Kiatkittipong, “Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres,” Energy, vol. 254, p. 124397, 2022, https://doi.org/10.1016/j.energy.2022.124397.
  • 42. Y. Li and H. Luo, “Integration of light hydrocarbons cryogenic separation process in refinery based on LNG cold energy utilization,” Chemical Engineering Research and Design, vol. 93, pp. 632-639, 2015, https://doi.org/10.1016/j. cherd.2014.04.009.
  • 43. N. T. Stetson and R. C. Bowman, “ Fuel cell system cost. Department of Energy Hydrogen and Fuel Cells Program Record,” 2016.
  • 44. R. E. Ciez and J. F. Whitacre, “Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model,” J. Power Sources, vol. 340, pp. 273-281, 2017, https://doi.org/10.1016/j. jpowsour.2016.11.054.
  • 45. M. S. Peters, K. D. Timmerhaus, and R. E. West, Plant design and economics for chemical engineers. McGrawHill, 2003.
  • 46. MAN, “Hydrogen in shipping, MAN Energy Solutions,” https://www.man-es.com/campaigns/download-Q2-2023/ Download/hydrogen-in-shipping/faffa612-4edc-4a2aa5f9-df89c632a431/Future-Fuels-Hydrogen (accessed 30 March 2023).
  • 47. EIA, US Energy Information Administration, Natural Gas Statistics, https://www.eia.gov/dnav/ng/hist/rngwhhdD. htm (accessed 30 January 2023.
  • 48. IMO, Guidelines on the method of calculation of the attained Energy Efficiency Existing Ship Index (EEXI). Resolution MEPC.333(76), https://wwwcdn.imo.org/localresources/ en/KnowledgeCentre/IndexofIMOResolutions/ MEPCDocuments/MEPC.333(76).pdf (accessed 10 May 2023.
  • 49. ABS, “Energy Efficiency Existing Ship Index (EEXI),” https://ww2.eagle.org/content/dam/eagle/regulatorynews/2022/ABS%20Regulatory%20News%20-%20EEXI. pdf (accessed 10 May 2023.
  • 50. IACS, “EEXI Implementation Guidelines,” https://iacs.org. uk/download/14308 (accessed 10 May 2023.
  • 51. IMO, “Report of the marine environment protection committee on its sixty-second session,” http://www.crs.hr/ Portals/0/MEPC%2062-24.pdf (accessed 27 October 2018).
  • 52. J. Ahn, H. You, J. Ryu, and D. Chang, “Strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker,” Int. J. Hydrogen Energ., vol. 42, no. 8, pp. 53665380, 2017, https://doi.org/10.1016/j.ijhydene.2017.01.037.
  • 53. N. R. Ammar, “Environmental and cost-effectiveness comparison of dual fuel propulsion options for emissions reduction onboard LNG carriers,” Brodogradnja/ Shipbuilding, vol. 70(3), no. 3, pp. 61-77, 2019. [Online]. Available: https://hrcak.srce.hr/221116.
  • 54. D. Dobrota, B. Lalić, and I. Komar, “Problem of boil-off in LNG supply chain,” Transactions on Maritime Science, vol. 2, pp. 91-100, 2013.
  • 55. J. Blazquez, R. Fuentes, and B. Manzano, “On some economic principles of the energy transition,” Energy Policy, vol. 147, p. 111807, 2020, https://doi.org/10.1016/j. enpol.2020.111807.
  • 56. D. Lukić et al., “Manufacturing cost estimation in the conceptual process planning,” Machine Design, vol. 8, pp. 83-90, 2016.
  • 57. Ihsan, “The analysis of the effect of indirect costs on the performance of construction project implementation,” Jurnal PenSil, vol. 12, pp. 100-119, 2023, doi: 10.21009/ jpensil.v12i1.30978.
  • 58. N. R. Ammar and I. S. Seddiek, “An environmental and economic analysis of emission reduction strategies for container ships with emphasis on the improved energy efficiency indexes,” Environ. Sci. Pollut. R., vol. 27, no. 18, pp. 23342-23355, 2020, doi: 10.1007/s11356-020-08861-7.
  • 59. N. R. Ammar and I. S. Seddiek, “Evaluation of the environmental and economic impacts of electric propulsion systems onboard ships: case study passenger vessel,” Environ. Sci. Pollut. R., vol. 28, no. 28, pp. 37851-37866, 2021, doi: 10.1007/s11356-021-13271-4.
  • 60. P. Thoft-Christensen, “Infrastructures and life-cycle cost-benefit analysis,” Structure and Infrastructure Engineering, vol. 8, no. 5, pp. 507-516, 2012, doi: 10.1080/15732479.2010.539070.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc4eee44-cae2-47f0-8f65-9846aafd17d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.