PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

One-year-long, comprehensive analysis of pm number and mass size distributions in Warszawa (Poland)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The properties of particulate matter PM, including its impact on the environment and human health, depend mainly on the size (more precisely: size distribution) of the particles since the size is usually dependent on the processes/sources of the PM. This work presents the results of a one-year-long measurement campaign of PM. PALAS Fidas 200 from Airpointer air quality station was used. The PM was measured in Warsaw, Poland continuously from 1st May 2022 to 30th April 2023; size distribution was recorded with 120 s intervals and averaged in 3600 s periods. It was found, that the number and the mass size distribution varied depending on the averaging period (different hours of the day, different days of the week, and different months of the year). Additionally, the authors determined the periods of impact on selected sources (traffic emission, municipal emission, and industrial emission) on the number and mass size distributions of PM at the sampling site. Monitoring of number and mass size distributions of PM is a relatively easy and more cost-effective method than analysing the chemical composition of PM. Therefore, is crucial to develop a method of identifying sources of PM based on size distributions. It was found that such a method can be in the future as successful in source apportionment as in the analysis of chemical compositions.
Rocznik
Strony
541--556
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
  • Fire University, ul. J. Słowackiego 52/54, 01-629 Warszawa, Poland
  • Fire University, ul. J. Słowackiego 52/54, 01-629 Warszawa, Poland
  • Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
  • Institute of Biology, University of Opole, ul. kard. B. Kominka 6, 6a 45-032 Opole, Poland
  • Institute of Biology, University of Opole, ul. kard. B. Kominka 6, 6a 45-032 Opole, Poland
  • Department of Thermal Engineering and Industrial Facilities, Opole University of Technology, ul. S. Mikołajczyka 5, 45-271 Opole, Poland
Bibliografia
  • [1] Hinds WC, Zhu Y. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Hoboken, NJ: Wiley; 2022. ISBN: 9781119494041.
  • [2] EC, Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, 2008. Available from: https://eur-lex.europa.eu/eli/dir/2008/50/oj
  • [3] Klejnowski K, Pastuszka JS, Rogula-Kozłowska W, Talik E, Krasa A. Mass size distribution and chemical composition of the surface layer of summer and winter airborne particles in Zabrze, Poland. Bull Environ Contam Toxicol. 2012;88(2):255-9. DOI: 10.1007/s00128-011-0452-3.
  • [4] Laaongnaun S, Patumsawad S. Particulate matter characterization of the combustion emissions from agricultural waste products. Heliyon. 2022;8(8):e10392. DOI: 10.1016/j.heliyon.2022.e10392.
  • [5] Novoselova LV, Shvarts KG, Shklyaev VA. Analysis of air pollen monitoring results in Perm and determination of main directions of pollen grain transfer. IOP Conf Ser: Earth Environ Sci. 2022;1023(1):012003. DOI: 10.1088/1755-1315/1023/1/012003.
  • [6] Miki K, Kawashima S, Fujita T, Nakamura K, Clot B. Effect of micro-scale wind on the measurement of airborne pollen concentrations using volumetric methods on a building rooftop. Atmos Environ. 2017;158:1-10. DOI: 10.1016/j.atmosenv.2017.03.015.
  • [7] Fineman S, Wang W, Jin Z, Liu Y. Hourly variation of pollen counts. Ann Allergy Asthma Immunol. 2022;129(5):S23. DOI: 10.1016/j.anai.2022.08.570.
  • [8] World Health Organization, WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. World Health Organization. ISBN: 9789240034228.
  • [9] Hu Y, Wu M, Li Y, Liu X. Influence of PM1 exposure on total and cause-specific respiratory diseases: a systematic review and meta-analysis. Environ Sci Pollut Res. 2022;29(10):15117-26. DOI: 10.1007/s11356-021-16536-0.
  • [10] Venables WN, Ripley BD. Modern Applied Statistics with S. New York: Springer New York; 2002. DOI: 10.1007/978-0-387-21706-2.
  • [11] Guthrie WF. NIST/SEMATECH e-Handbook of Statistical Methods (NIST Handbook 151). National Institute of Standards and Technology; 2020. DOI: 10.18434/M32189.
  • [12] Hausdorff F. Summationsmethoden und momentfolgen I. [Summation methods and sequences of moment I]. Math Z. 1921;9(1-2):74-109. DOI: 10.1007/BF01378337.
  • [13] Hausdorff F. Summationsmethoden und momentfolgen II [Summation methods and sequences of moment II]. Math Z. 1921;9(3-4):280-99. DOI: 10.1007/BF01279032.
  • [14] Maurin K. Analiza. Cz. 2: Ogólne struktury matematyki, funkcje algebraiczne, całkowanie, analiza tensorowa. [Part. 2: General structures of mathematics, algebraic functions, integration, tensor analysis]. Warszawa: Wyd Nauk PWN; 2010. ISBN: 9788301162306
  • [15] Mach T, Bihałowicz JS. How to effectively analyse the impact of air quality on society - review of modern measurement techniques and apparatus: particulates. Sci Rep Fire Univ (ZN SGSP). 2022;84:55-71. DOI: 10.5604/01.3001.0016.1801.
  • [16] PALAS GmbH, Fidas® 200 EN 16450 approved fine dust measurement device for simultaneous measurement of PM2.5 and PM10. Available from: https://www.palas.de/en/product/fidas200.
  • [17] DURAG GROUP, EDM 280 Environmental dust monitor for PM monitoring in ambient air. Available from: https://www.durag.com/en/product-filter-837.htm?productID=EDM%20280.
  • [18] Dekati Ltd, High Resolution ELPI®+. Available from: https://www.dekati.com/products/high-resolutionelpi/.
  • [19] Rogula-Kozłowska W. Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Health. 2016;9(5):533-50. DOI: 10.1007/s11869-015-0359-y.
  • [20] Klejnowski K, Krasa A, Rogula-Kozłowska W, Błaszczak B. Number size distribution of ambient particles in a typical urban site: The first Polish assessment based on long-term (9 months) measurements. Sci World J. 2013;2013:1-13. DOI: 10.1155/2013/539568.
  • [21] Mach T. Skład pierwiastkowy PM badany z wysoką rozdzielczością czasową (0,5-1h) jako narzędzie w ocenie pochodzenia zanieczyszczeń pyłowych powietrza wybranych regionów Polski, 2023. [Elemental composition of PM examined with high time resolution (0.5-1 h) as a tool in assessing the origin of air pollution in selected regions of Poland, 2023]. PhD Thesis. Wroclaw: University of Science and Technology; 2023. Available from: https://www.dbc.wroc.pl/publication/163289.
  • [22] Kuskowska K, Dmochowski D. Analiza rozkładu stężeń pyłu zawieszonego frakcji PM10, PM2,5 i PM1,0 na różnych wysokościach Mostu Gdańskiego. [Analysis of the distribution of suspended dust concentrations of PM10, PM2.5 and PM1.0 fractions at various heights of the Gdańsk Bridge]. Sci Rep Fire Univ (ZN SGSP). 2016;3(59):101-19. Available from: https://zeszytynaukowesgsp.pl/resources/html/article/details?id=208894&language=pl.
  • [23] Majewski G, Przewoźniczuk W. Study of particulate matter pollution in Warsaw area. Pol J Environ Stud. 2009;18(2). Available from: http://www.pjoes.com/pdf-88234-22092?filename=Study%20of%20Particulate.pdf.
  • [24] EN 16450 Ambient air - Automated measuring systems for the measurement of the concentration of particulate matter (PM10; PM2.5), 2017. Available from: https://sklep.pkn.pl/pn-en-16450-2017-05e.html.
  • [25] EN 15267-1 Air quality - Assessment of air quality monitoring equipment - Part 1: General principles of certification, 2023. Available from: https://sklep.pkn.pl/pn-en-15267-1-2023-11e.html.
  • [26] EN 15267-2 Air quality - Assessment of air quality monitoring equipment - Part 2: Initial assessment of the manufacturer’s quality management system and post certification surveillance for the manufacturing process, 2023. Available from: https://sklep.pkn.pl/pn-en-15267-2-2023-11e.html.
  • [27] EN 12341 Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2.5 mass concentration of suspended particulate matter, 2014. Available from: https://sklep.pkn.pl/pn-en-12341-2014-07e.html.
  • [28] Lufft, WS600-UMB Smart Weather Sensor. Available from: https://www.lufft.com/products/compactweather-sensors-293/ws600-umb-smart-weather-sensor-1832/.
  • [29] Gay J. Analyzing Accuracy of the Lufft WS600 in Remotely Measuring Precipitation Events. 2016. Available from: https://digitalcommons.calpoly.edu/star/374.
  • [30] TSI Incorporated, Aerosol statistics lognormal distributions and dN/dlogDp, 2012. Available from: https://tsi.com/getmedia/1621329b-f410-4dce-992b-e21e1584481a/PR-001-RevA_Aerosol-Statistics-AppNote?ext=.pdf.
  • [31] Van Rossum G, Drake FL. Python 3 Reference Manual. CreateSpace. Scotts Valley: CA; 2009. DOI: 10.5555/1593511.
  • [32] The Pandas development team, pandas-dev/pandas: Pandas; 2020, DOI: 10.5281/zenodo.3509134.
  • [33] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585(7825):357-62. DOI: 10.1038/s41586-020-2649-2.
  • [34] Hunter JD. Matplotlib: A 2D Graphics Environment. Comput in Sci & Eng. 2007;9(3):90-5. DOI: 10.1109/MCSE.2007.55.
  • [35] Waskom ML. Seaborn: statistical data visualisation. J Open Source Softw. 2021;6(60):3021. DOI: 10.21105/joss.03021.
  • [36] QGIS Development Team, QGIS Geographic Information System. Open Source Geospatial Foundation Project. ver 3.22 Białowieża, 2021. Available from: https://qgis.org/.
  • [37] Rogula-Kozłowska W. Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols. Bull Environ Contamin Toxicol. 2014;93(4):493-502. DOI: 10.1007/s00128-014-1364-9.
  • [38] GUGiK, View services (WMS and WMTS). geoportal.gov.pl. Available from: https://www.geoportal.gov.pl/uslugi/usluga-przegladania-wms.
  • [39] GDDKiA. General Traffic Measurement (GPR) 2020/2021, 2021. Available from: https://www.gov.pl/web/gddkia/generalny-pomiar-ruchu-20202021.
  • [40] Budzyńska-Lipka W, Świsłowski P, Rajfur M. Biological monitoring using lichens as a source of information about contamination of mountain with heavy metals. Ecol Chem Eng S. 2022;29(2):155-68. DOI: 10.2478/eces-2022-0012
  • [41] Madadzada AI, Nuhuyeva SS, Mammadov EA, Ibrahimov ZA, Jabbarov NS, Strelkova LP, et al. Heavy metal atmospheric deposition study in Azerbaijan based on moss technique and neutron activation analysis. Ecol Chem Eng S. 2022;29(2):143-53. DOI: 10.2478/eces-2022-0011.
  • [42] Norris G, Duvall R, Brown S, Bai S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Washington DC: US Environmental Protection Agency; 2014. Available from: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&direntryid=308292.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc4d4a56-b301-4210-a70c-f6e0f070a7b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.