PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods for flow separation prevention on external contour at high expansion angles of steam turbine flow path

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most thermal and nuclear power plants use a steam turbine to convert steam potential energy into mechanical work on the rotating rotor. To operate the steam turbine at high efficiency, the aerodynamic losses in the flow path must be decreased, especially in a low-pressure turbine (LPT). This study focuses on the problem of flow separation in the area of the external contour, occurring at high expansion angles of the flow path and constituting a principal cause of flow non-uniformity upstream of the nozzle assembly. Under specific flow conditions, the nozzle assembly peripheral area can be blocked by concentrated vortex, resulting in a sharp increase in losses. A numerical study and comparative analysis of two solutions to this problem were conducted. Quantitative evaluation of nozzle blade cascade energy loss reduction showed that the flow suction on the external surface of a wide-angle diffuser is the most effective in the case of removal of 2% of total flow, using holes located in the middle of an annular diffuser. In this case, the loss coefficient of nozzle blade cascade was reduced by 2.1%. Enhancement of LPT flow path, by mounting an aerodynamic deflector in a wide-angle diffuser, led to a 3% decrease in the loss coefficient. The research results lead to the conclusion that energy losses caused by high expansion angles of LPT flow path can be reduced by applying the considered methods to prevent flow separation on the external contour upstream of the nozzle assembly.
Rocznik
Strony
10--14
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • National Research University “Moscow Power Engineering Institute”, Moscow 111250, Russia
  • National Research University “Moscow Power Engineering Institute”, Moscow 111250, Russia
  • National Research University “Moscow Power Engineering Institute”, Moscow 111250, Russia
  • National Research University “Moscow Power Engineering Institute”, Moscow 111250, Russia
Bibliografia
  • [1] P. Regulagadda, I. Dincer, G. Naterer, Exergy analysis of a thermal power plant with measured boiler and turbine losses, Applied Thermal Engineering 30 (8-9) (2010) 970–976.
  • [2] E. Watanabe, Y. Tanaka, T. Nakano, H. Ohyama, K. Tanaka, T. Miyawaki, M. Tsutsumi, T. Shinohara, Development of new high efficiency steam turbine, Mitsubishi Heavy Ind. Tech. Rev. 40 (4) (2003) 6.
  • [3] A. Chaibakhsh, A. Ghaffari, Steam turbine model, Simulation Modelling Practice and Theory 16 (9) (2008) 1145–1162.
  • [4] M. Häfele, J. Starzmann, M. Grübel, M. Schatz, D. Vogt, R. Drozdowski, L. Völker, Numerical investigation of the impact of partspan connectors on aero-thermodynamics in a low pressure industrial steam turbine, in: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2014, pp. V01BT27A004–V01BT27A004.
  • [5] V. Michelassi, L.-W. Chen, R. Pichler, R. D. Sandberg, Compressible direct numerical simulation of low-pressure turbines part ii: Effect of inflow disturbances, Journal of Turbomachinery 137 (7) (2015) 071005.
  • [6] D. Lengani, D. Simoni, Recognition of coherent structures in the boundary layer of a low-pressure-turbine blade for different free-stream turbulence intensity levels, International Journal of Heat and Fluid Flow 54 (2015) 1–13.
  • [7] J. Starzmann, M. M. Casey, J. F. Mayer, F. Sieverding, Wetness loss prediction for a low pressure steam turbine using computational fluid dynamics, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 228 (2) (2014) 216–231.
  • [8] C. Hall, S. L. Dixon, Fluid mechanics and thermodynamics of turbomachinery, Butterworth-Heinemann, 2013.
  • [9] A. Zaryankin, S. Arianov, V. Zaryankin, A. Pavlov, Prospects of using two-tier low-pressure cylinders in steam-turbine power units, Thermal engineering 56 (1) (2009) 50–56.
  • [10] A. Zaryankin, Two-tier low pressure cylinders for condensing steam turbines, Transactions of the Institute of Fluid-Flow Machinery.
  • [11] K. Sangston, J. Little, M. E. Lyall, R. Sondergaard, End wall loss reduction of high lift low pressure turbine airfoils using profile contouring part ii: Validation, Journal of Turbomachinery 136 (8) (2014) 081006.
  • [12] R. Tindell, T. Alston, C. Sarro, G. Stegmann, L. Gray, J. Davids, Computational fluid dynamics analysis of a steam power plant low-pressure turbine downward exhaust hood, Journal of engineering for gas turbines and power 118 (1) (1996) 214–224.
  • [13] M. Deich, A. Zaryankin, Gas dynamic of diffusors and exhaust hood, Energiya, Moscow (1970) 384.
  • [14] J. Starzmann, M. Schatz, M. Casey, J. Mayer, F. Sieverding, Modelling and validation of wet steam flow in a low pressure steam turbine, in: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2011, pp. 2335– 2346.
  • [15] V. Gribin, A. Tishchenko, I. Y. Gavrilov, V. Popov, I. Y. Sorokin, V. Tishchenko, S. Khomyakov, Experimental study of intrachannel separation in a flat nozzle turbine blade assembly with wet stream flow1, Power Technology and Engineering 50 (2) (2016) 180–187.
  • [16] V. Gribin, A. Tishchenko, V. Tishchenko, I. Gavrilov, S. Khomiakov, V. Popov, A. Lisyanskiy, A. Nekrasov, V. Nazarov, K. Usachev, An experimental study of influence of the steam injection on the profile surface on the turbine nozzle cascade performance, in: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2014, pp. V01BT27A050–V01BT27A050.
  • [17] V. Solodov, A. Khandrymailov, V. Shvetsov, I. Kozheshkurt, V. Konev, Investigation of aerodynamic and energy characteristics of lpc compartment of stages with inlet pipe and leak system for powerful steam turbine unit, The Bulletin of the National Technical University “Kharkiv Polytechnic Institute” series: “Power and heat engineering processes and equipment” (8).
  • [18] S. Miyake, I. Koda, S. Yamamoto, Y. Sasao, K. Momma, T. Miyawaki, H. Ooyama, Unsteady wake and vortex interactions in 3-d steam turbine low pressure final three stages, in: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, 2014, pp. V01BT27A013–V01BT27A013.
  • [19] J. Cui, V. N. Rao, P. Tucker, Numerical investigation of contrasting flow physics in different zones of a high-lift low-pressure turbine blade, Journal of Turbomachinery 138 (1) (2016) 011003.
  • [20] A. Zaryankin, Mechanics of compressible and incompressible flows, MPEI (2014) 590.
  • [21] A. Zaryankin, V. Gribin, A. Paramonov, V. Noskov, O. Mitrokhova, The effect the aperture angle of flat diffusers has on their vibration state and ways for reducing this vibration, Thermal Engineering 59 (9) (2012) 674–682.
  • [22] A. Zaryankin, A. Rogalev, S. Osipov, V. Khudyakova, I. Komarov, Method to flow parameters non-uniformity reduction in the afterextraction stages of two-tier low-pressure turbine, International Journal of Applied Engineering Research 11 (20) (2016) 10299–10306.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cc4bc600-b6ae-4c64-9275-7057f5065d86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.